//! See [`AssistContext`]. use std::mem; use hir::Semantics; use ide_db::{ base_db::{AnchoredPathBuf, FileId, FileRange}, helpers::SnippetCap, }; use ide_db::{ label::Label, source_change::{FileSystemEdit, SourceChange}, RootDatabase, }; use syntax::{ algo::{self, find_node_at_offset, find_node_at_range}, AstNode, AstToken, Direction, SourceFile, SyntaxElement, SyntaxKind, SyntaxNode, SyntaxNodePtr, SyntaxToken, TextRange, TextSize, TokenAtOffset, }; use text_edit::{TextEdit, TextEditBuilder}; use crate::{ assist_config::AssistConfig, Assist, AssistId, AssistKind, AssistResolveStrategy, GroupLabel, }; /// `AssistContext` allows to apply an assist or check if it could be applied. /// /// Assists use a somewhat over-engineered approach, given the current needs. /// The assists workflow consists of two phases. In the first phase, a user asks /// for the list of available assists. In the second phase, the user picks a /// particular assist and it gets applied. /// /// There are two peculiarities here: /// /// * first, we ideally avoid computing more things then necessary to answer "is /// assist applicable" in the first phase. /// * second, when we are applying assist, we don't have a guarantee that there /// weren't any changes between the point when user asked for assists and when /// they applied a particular assist. So, when applying assist, we need to do /// all the checks from scratch. /// /// To avoid repeating the same code twice for both "check" and "apply" /// functions, we use an approach reminiscent of that of Django's function based /// views dealing with forms. Each assist receives a runtime parameter, /// `resolve`. It first check if an edit is applicable (potentially computing /// info required to compute the actual edit). If it is applicable, and /// `resolve` is `true`, it then computes the actual edit. /// /// So, to implement the original assists workflow, we can first apply each edit /// with `resolve = false`, and then applying the selected edit again, with /// `resolve = true` this time. /// /// Note, however, that we don't actually use such two-phase logic at the /// moment, because the LSP API is pretty awkward in this place, and it's much /// easier to just compute the edit eagerly :-) pub(crate) struct AssistContext<'a> { pub(crate) config: &'a AssistConfig, pub(crate) sema: Semantics<'a, RootDatabase>, pub(crate) frange: FileRange, trimmed_range: TextRange, source_file: SourceFile, } impl<'a> AssistContext<'a> { pub(crate) fn new( sema: Semantics<'a, RootDatabase>, config: &'a AssistConfig, frange: FileRange, ) -> AssistContext<'a> { let source_file = sema.parse(frange.file_id); let start = frange.range.start(); let end = frange.range.end(); let left = source_file.syntax().token_at_offset(start); let right = source_file.syntax().token_at_offset(end); let left = left.right_biased().and_then(|t| algo::skip_whitespace_token(t, Direction::Next)); let right = right.left_biased().and_then(|t| algo::skip_whitespace_token(t, Direction::Prev)); let left = left.map(|t| t.text_range().start()).unwrap_or(start).clamp(start, end); let right = right.map(|t| t.text_range().end()).unwrap_or(end).clamp(start, end); let trimmed_range = TextRange::new(left, right); AssistContext { config, sema, frange, source_file, trimmed_range } } pub(crate) fn db(&self) -> &RootDatabase { self.sema.db } // NB, this ignores active selection. pub(crate) fn offset(&self) -> TextSize { self.frange.range.start() } /// Returns the selected range trimmed for whitespace tokens, that is the range will be snapped /// to the nearest enclosed token. pub(crate) fn selection_trimmed(&self) -> TextRange { self.trimmed_range } pub(crate) fn token_at_offset(&self) -> TokenAtOffset { self.source_file.syntax().token_at_offset(self.offset()) } pub(crate) fn find_token_syntax_at_offset(&self, kind: SyntaxKind) -> Option { self.token_at_offset().find(|it| it.kind() == kind) } pub(crate) fn find_token_at_offset(&self) -> Option { self.token_at_offset().find_map(T::cast) } pub(crate) fn find_node_at_offset(&self) -> Option { find_node_at_offset(self.source_file.syntax(), self.offset()) } pub(crate) fn find_node_at_range(&self) -> Option { find_node_at_range(self.source_file.syntax(), self.trimmed_range) } pub(crate) fn find_node_at_offset_with_descend(&self) -> Option { self.sema.find_node_at_offset_with_descend(self.source_file.syntax(), self.offset()) } /// Returns the element covered by the selection range, this excludes trailing whitespace in the selection. pub(crate) fn covering_element(&self) -> SyntaxElement { self.source_file.syntax().covering_element(self.selection_trimmed()) // self.source_file.syntax().covering_element(self.frange.range) } } pub(crate) struct Assists { file: FileId, resolve: AssistResolveStrategy, buf: Vec, allowed: Option>, } impl Assists { pub(crate) fn new(ctx: &AssistContext, resolve: AssistResolveStrategy) -> Assists { Assists { resolve, file: ctx.frange.file_id, buf: Vec::new(), allowed: ctx.config.allowed.clone(), } } pub(crate) fn finish(mut self) -> Vec { self.buf.sort_by_key(|assist| assist.target.len()); self.buf } pub(crate) fn add( &mut self, id: AssistId, label: impl Into, target: TextRange, f: impl FnOnce(&mut AssistBuilder), ) -> Option<()> { let mut f = Some(f); self.add_impl(None, id, label.into(), target, &mut |it| f.take().unwrap()(it)) } pub(crate) fn add_group( &mut self, group: &GroupLabel, id: AssistId, label: impl Into, target: TextRange, f: impl FnOnce(&mut AssistBuilder), ) -> Option<()> { let mut f = Some(f); self.add_impl(Some(group), id, label.into(), target, &mut |it| f.take().unwrap()(it)) } fn add_impl( &mut self, group: Option<&GroupLabel>, id: AssistId, label: String, target: TextRange, f: &mut dyn FnMut(&mut AssistBuilder), ) -> Option<()> { if !self.is_allowed(&id) { return None; } let source_change = if self.resolve.should_resolve(&id) { let mut builder = AssistBuilder::new(self.file); f(&mut builder); Some(builder.finish()) } else { None }; let label = Label::new(label); let group = group.cloned(); self.buf.push(Assist { id, label, group, target, source_change }); Some(()) } fn is_allowed(&self, id: &AssistId) -> bool { match &self.allowed { Some(allowed) => allowed.iter().any(|kind| kind.contains(id.1)), None => true, } } } pub(crate) struct AssistBuilder { edit: TextEditBuilder, file_id: FileId, source_change: SourceChange, /// Maps the original, immutable `SyntaxNode` to a `clone_for_update` twin. mutated_tree: Option, } pub(crate) struct TreeMutator { immutable: SyntaxNode, mutable_clone: SyntaxNode, } impl TreeMutator { pub(crate) fn new(immutable: &SyntaxNode) -> TreeMutator { let immutable = immutable.ancestors().last().unwrap(); let mutable_clone = immutable.clone_for_update(); TreeMutator { immutable, mutable_clone } } pub(crate) fn make_mut(&self, node: &N) -> N { N::cast(self.make_syntax_mut(node.syntax())).unwrap() } pub(crate) fn make_syntax_mut(&self, node: &SyntaxNode) -> SyntaxNode { let ptr = SyntaxNodePtr::new(node); ptr.to_node(&self.mutable_clone) } } impl AssistBuilder { pub(crate) fn new(file_id: FileId) -> AssistBuilder { AssistBuilder { edit: TextEdit::builder(), file_id, source_change: SourceChange::default(), mutated_tree: None, } } pub(crate) fn edit_file(&mut self, file_id: FileId) { self.commit(); self.file_id = file_id; } fn commit(&mut self) { if let Some(tm) = self.mutated_tree.take() { algo::diff(&tm.immutable, &tm.mutable_clone).into_text_edit(&mut self.edit) } let edit = mem::take(&mut self.edit).finish(); if !edit.is_empty() { self.source_change.insert_source_edit(self.file_id, edit); } } pub(crate) fn make_mut(&mut self, node: N) -> N { self.mutated_tree.get_or_insert_with(|| TreeMutator::new(node.syntax())).make_mut(&node) } /// Returns a copy of the `node`, suitable for mutation. /// /// Syntax trees in rust-analyzer are typically immutable, and mutating /// operations panic at runtime. However, it is possible to make a copy of /// the tree and mutate the copy freely. Mutation is based on interior /// mutability, and different nodes in the same tree see the same mutations. /// /// The typical pattern for an assist is to find specific nodes in the read /// phase, and then get their mutable couterparts using `make_mut` in the /// mutable state. pub(crate) fn make_syntax_mut(&mut self, node: SyntaxNode) -> SyntaxNode { self.mutated_tree.get_or_insert_with(|| TreeMutator::new(&node)).make_syntax_mut(&node) } /// Remove specified `range` of text. pub(crate) fn delete(&mut self, range: TextRange) { self.edit.delete(range) } /// Append specified `text` at the given `offset` pub(crate) fn insert(&mut self, offset: TextSize, text: impl Into) { self.edit.insert(offset, text.into()) } /// Append specified `snippet` at the given `offset` pub(crate) fn insert_snippet( &mut self, _cap: SnippetCap, offset: TextSize, snippet: impl Into, ) { self.source_change.is_snippet = true; self.insert(offset, snippet); } /// Replaces specified `range` of text with a given string. pub(crate) fn replace(&mut self, range: TextRange, replace_with: impl Into) { self.edit.replace(range, replace_with.into()) } /// Replaces specified `range` of text with a given `snippet`. pub(crate) fn replace_snippet( &mut self, _cap: SnippetCap, range: TextRange, snippet: impl Into, ) { self.source_change.is_snippet = true; self.replace(range, snippet); } pub(crate) fn replace_ast(&mut self, old: N, new: N) { algo::diff(old.syntax(), new.syntax()).into_text_edit(&mut self.edit) } pub(crate) fn create_file(&mut self, dst: AnchoredPathBuf, content: impl Into) { let file_system_edit = FileSystemEdit::CreateFile { dst, initial_contents: content.into() }; self.source_change.push_file_system_edit(file_system_edit); } pub(crate) fn move_file(&mut self, src: FileId, dst: AnchoredPathBuf) { let file_system_edit = FileSystemEdit::MoveFile { src, dst }; self.source_change.push_file_system_edit(file_system_edit); } fn finish(mut self) -> SourceChange { self.commit(); mem::take(&mut self.source_change) } }