//! See `CompletionContext` structure. use base_db::SourceDatabaseExt; use hir::{Local, Name, ScopeDef, Semantics, SemanticsScope, Type, TypeInfo}; use ide_db::{ base_db::{FilePosition, SourceDatabase}, call_info::ActiveParameter, RootDatabase, }; use syntax::{ algo::find_node_at_offset, ast::{self, NameOrNameRef, NameOwner}, match_ast, AstNode, NodeOrToken, SyntaxKind::{self, *}, SyntaxNode, SyntaxToken, TextRange, TextSize, T, }; use text_edit::Indel; use crate::{ patterns::{ determine_location, determine_prev_sibling, for_is_prev2, inside_impl_trait_block, is_in_loop_body, previous_token, ImmediateLocation, ImmediatePrevSibling, }, CompletionConfig, }; #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub(crate) enum PatternRefutability { Refutable, Irrefutable, } #[derive(Debug)] pub(super) enum PathKind { Expr, Type, } #[derive(Debug)] pub(crate) struct PathCompletionContext { /// If this is a call with () already there call_kind: Option, /// A single-indent path, like `foo`. `::foo` should not be considered a trivial path. pub(super) is_trivial_path: bool, /// If not a trivial path, the prefix (qualifier). pub(super) qualifier: Option, /// Whether the qualifier comes from a use tree parent or not pub(super) use_tree_parent: bool, pub(super) kind: Option, /// Whether the path segment has type args or not. pub(super) has_type_args: bool, /// `true` if we are a statement or a last expr in the block. pub(super) can_be_stmt: bool, pub(super) in_loop_body: bool, } #[derive(Debug)] pub(super) struct PatternContext { pub(super) refutability: PatternRefutability, pub(super) is_param: Option, } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub(crate) enum CallKind { Pat, Mac, Expr, } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub(crate) enum ParamKind { Function, Closure, } /// `CompletionContext` is created early during completion to figure out, where /// exactly is the cursor, syntax-wise. #[derive(Debug)] pub(crate) struct CompletionContext<'a> { pub(super) sema: Semantics<'a, RootDatabase>, pub(super) scope: SemanticsScope<'a>, pub(super) db: &'a RootDatabase, pub(super) config: &'a CompletionConfig, pub(super) position: FilePosition, /// The token before the cursor, in the original file. pub(super) original_token: SyntaxToken, /// The token before the cursor, in the macro-expanded file. pub(super) token: SyntaxToken, pub(super) krate: Option, pub(super) expected_name: Option, pub(super) expected_type: Option, /// The parent function of the cursor position if it exists. pub(super) function_def: Option, /// The parent impl of the cursor position if it exists. pub(super) impl_def: Option, pub(super) name_syntax: Option, // potentially set if we are completing a lifetime pub(super) lifetime_param_syntax: Option, pub(super) lifetime_allowed: bool, pub(super) is_label_ref: bool, pub(super) completion_location: Option, pub(super) prev_sibling: Option, pub(super) attribute_under_caret: Option, pub(super) previous_token: Option, pub(super) pattern_ctx: Option, pub(super) path_context: Option, pub(super) locals: Vec<(String, Local)>, pub(super) incomplete_let: bool, no_completion_required: bool, } impl<'a> CompletionContext<'a> { pub(super) fn new( db: &'a RootDatabase, position: FilePosition, config: &'a CompletionConfig, ) -> Option> { let sema = Semantics::new(db); let original_file = sema.parse(position.file_id); // Insert a fake ident to get a valid parse tree. We will use this file // to determine context, though the original_file will be used for // actual completion. let file_with_fake_ident = { let parse = db.parse(position.file_id); let edit = Indel::insert(position.offset, "intellijRulezz".to_string()); parse.reparse(&edit).tree() }; let fake_ident_token = file_with_fake_ident.syntax().token_at_offset(position.offset).right_biased().unwrap(); let krate = sema.to_module_def(position.file_id).map(|m| m.krate()); let original_token = original_file.syntax().token_at_offset(position.offset).left_biased()?; let token = sema.descend_into_macros(original_token.clone()); let scope = sema.scope_at_offset(&token, position.offset); let mut locals = vec![]; scope.process_all_names(&mut |name, scope| { if let ScopeDef::Local(local) = scope { locals.push((name.to_string(), local)); } }); let mut ctx = CompletionContext { sema, scope, db, config, position, original_token, token, krate, expected_name: None, expected_type: None, function_def: None, impl_def: None, name_syntax: None, lifetime_param_syntax: None, lifetime_allowed: false, is_label_ref: false, pattern_ctx: None, completion_location: None, prev_sibling: None, attribute_under_caret: None, previous_token: None, path_context: None, locals, incomplete_let: false, no_completion_required: false, }; ctx.expand_and_fill( original_file.syntax().clone(), file_with_fake_ident.syntax().clone(), position.offset, fake_ident_token, ); Some(ctx) } fn expand_and_fill( &mut self, mut original_file: SyntaxNode, mut speculative_file: SyntaxNode, mut offset: TextSize, mut fake_ident_token: SyntaxToken, ) { loop { // Expand attributes if let (Some(actual_item), Some(item_with_fake_ident)) = ( find_node_at_offset::(&original_file, offset), find_node_at_offset::(&speculative_file, offset), ) { match ( self.sema.expand_attr_macro(&actual_item), self.sema.speculative_expand_attr_macro( &actual_item, &item_with_fake_ident, fake_ident_token.clone(), ), ) { (Some(actual_expansion), Some(speculative_expansion)) => { let new_offset = speculative_expansion.1.text_range().start(); if new_offset > actual_expansion.text_range().end() { break; } original_file = actual_expansion; speculative_file = speculative_expansion.0; fake_ident_token = speculative_expansion.1; offset = new_offset; continue; } (None, None) => (), _ => break, } } // Expand fn-like macro calls if let (Some(actual_macro_call), Some(macro_call_with_fake_ident)) = ( find_node_at_offset::(&original_file, offset), find_node_at_offset::(&speculative_file, offset), ) { let mac_call_path0 = actual_macro_call.path().as_ref().map(|s| s.syntax().text()); let mac_call_path1 = macro_call_with_fake_ident.path().as_ref().map(|s| s.syntax().text()); if mac_call_path0 != mac_call_path1 { break; } let speculative_args = match macro_call_with_fake_ident.token_tree() { Some(tt) => tt, None => break, }; if let (Some(actual_expansion), Some(speculative_expansion)) = ( self.sema.expand(&actual_macro_call), self.sema.speculative_expand( &actual_macro_call, &speculative_args, fake_ident_token, ), ) { let new_offset = speculative_expansion.1.text_range().start(); if new_offset > actual_expansion.text_range().end() { break; } original_file = actual_expansion; speculative_file = speculative_expansion.0; fake_ident_token = speculative_expansion.1; offset = new_offset; } else { break; } } else { break; } } self.fill(&original_file, speculative_file, offset); } /// Checks whether completions in that particular case don't make much sense. /// Examples: /// - `fn $0` -- we expect function name, it's unlikely that "hint" will be helpful. /// Exception for this case is `impl Trait for Foo`, where we would like to hint trait method names. /// - `for _ i$0` -- obviously, it'll be "in" keyword. pub(crate) fn no_completion_required(&self) -> bool { self.no_completion_required } /// The range of the identifier that is being completed. pub(crate) fn source_range(&self) -> TextRange { // check kind of macro-expanded token, but use range of original token let kind = self.token.kind(); if kind == IDENT || kind == LIFETIME_IDENT || kind == UNDERSCORE || kind.is_keyword() { cov_mark::hit!(completes_if_prefix_is_keyword); self.original_token.text_range() } else if kind == CHAR { // assume we are completing a lifetime but the user has only typed the ' cov_mark::hit!(completes_if_lifetime_without_idents); TextRange::at(self.original_token.text_range().start(), TextSize::from(1)) } else { TextRange::empty(self.position.offset) } } pub(crate) fn previous_token_is(&self, kind: SyntaxKind) -> bool { self.previous_token.as_ref().map_or(false, |tok| tok.kind() == kind) } pub(crate) fn expects_assoc_item(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::Trait | ImmediateLocation::Impl)) } pub(crate) fn has_dot_receiver(&self) -> bool { matches!( &self.completion_location, Some(ImmediateLocation::FieldAccess { receiver, .. } | ImmediateLocation::MethodCall { receiver,.. }) if receiver.is_some() ) } pub(crate) fn dot_receiver(&self) -> Option<&ast::Expr> { match &self.completion_location { Some( ImmediateLocation::MethodCall { receiver, .. } | ImmediateLocation::FieldAccess { receiver, .. }, ) => receiver.as_ref(), _ => None, } } pub(crate) fn expects_non_trait_assoc_item(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::Impl)) } pub(crate) fn expects_item(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::ItemList)) } pub(crate) fn expects_generic_arg(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::GenericArgList(_))) } pub(crate) fn has_block_expr_parent(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::StmtList)) } pub(crate) fn expects_ident_pat_or_ref_expr(&self) -> bool { matches!( self.completion_location, Some(ImmediateLocation::IdentPat | ImmediateLocation::RefExpr) ) } pub(crate) fn expect_field(&self) -> bool { matches!( self.completion_location, Some(ImmediateLocation::RecordField | ImmediateLocation::TupleField) ) } pub(crate) fn in_use_tree(&self) -> bool { matches!( self.completion_location, Some(ImmediateLocation::Use | ImmediateLocation::UseTree) ) } pub(crate) fn has_impl_or_trait_prev_sibling(&self) -> bool { matches!( self.prev_sibling, Some(ImmediatePrevSibling::ImplDefType | ImmediatePrevSibling::TraitDefName) ) } pub(crate) fn has_impl_prev_sibling(&self) -> bool { matches!(self.prev_sibling, Some(ImmediatePrevSibling::ImplDefType)) } pub(crate) fn has_visibility_prev_sibling(&self) -> bool { matches!(self.prev_sibling, Some(ImmediatePrevSibling::Visibility)) } pub(crate) fn after_if(&self) -> bool { matches!(self.prev_sibling, Some(ImmediatePrevSibling::IfExpr)) } pub(crate) fn is_path_disallowed(&self) -> bool { self.attribute_under_caret.is_some() || self.previous_token_is(T![unsafe]) || matches!( self.prev_sibling, Some(ImmediatePrevSibling::Attribute | ImmediatePrevSibling::Visibility) ) || matches!( self.completion_location, Some( ImmediateLocation::Attribute(_) | ImmediateLocation::ModDeclaration(_) | ImmediateLocation::RecordPat(_) | ImmediateLocation::RecordExpr(_) ) ) } pub(crate) fn expects_expression(&self) -> bool { matches!(self.path_context, Some(PathCompletionContext { kind: Some(PathKind::Expr), .. })) } pub(crate) fn expects_type(&self) -> bool { matches!(self.path_context, Some(PathCompletionContext { kind: Some(PathKind::Type), .. })) } pub(crate) fn path_call_kind(&self) -> Option { self.path_context.as_ref().and_then(|it| it.call_kind) } pub(crate) fn is_trivial_path(&self) -> bool { matches!(self.path_context, Some(PathCompletionContext { is_trivial_path: true, .. })) } pub(crate) fn is_non_trivial_path(&self) -> bool { matches!(self.path_context, Some(PathCompletionContext { is_trivial_path: false, .. })) } pub(crate) fn path_qual(&self) -> Option<&ast::Path> { self.path_context.as_ref().and_then(|it| it.qualifier.as_ref()) } /// Checks if an item is visible and not `doc(hidden)` at the completion site. pub(crate) fn is_visible(&self, item: &I) -> bool where I: hir::HasVisibility + hir::HasAttrs + hir::HasCrate + Copy, { self.is_visible_impl(&item.visibility(self.db), &item.attrs(self.db), item.krate(self.db)) } pub(crate) fn is_scope_def_hidden(&self, scope_def: &ScopeDef) -> bool { if let (Some(attrs), Some(krate)) = (scope_def.attrs(self.db), scope_def.krate(self.db)) { return self.is_doc_hidden(&attrs, krate); } false } pub(crate) fn is_item_hidden(&self, item: &hir::ItemInNs) -> bool { let attrs = item.attrs(self.db); let krate = item.krate(self.db); match (attrs, krate) { (Some(attrs), Some(krate)) => self.is_doc_hidden(&attrs, krate), _ => false, } } pub(crate) fn is_immediately_after_macro_bang(&self) -> bool { self.token.kind() == BANG && self.token.parent().map_or(false, |it| it.kind() == MACRO_CALL) } /// A version of [`SemanticsScope::process_all_names`] that filters out `#[doc(hidden)]` items. pub(crate) fn process_all_names(&self, f: &mut dyn FnMut(Name, ScopeDef)) { self.scope.process_all_names(&mut |name, def| { if self.is_scope_def_hidden(&def) { return; } f(name, def); }) } fn is_visible_impl( &self, vis: &hir::Visibility, attrs: &hir::Attrs, defining_crate: hir::Crate, ) -> bool { let module = match self.scope.module() { Some(it) => it, None => return false, }; if !vis.is_visible_from(self.db, module.into()) { // If the definition location is editable, also show private items let root_file = defining_crate.root_file(self.db); let source_root_id = self.db.file_source_root(root_file); let is_editable = !self.db.source_root(source_root_id).is_library; return is_editable; } !self.is_doc_hidden(attrs, defining_crate) } fn is_doc_hidden(&self, attrs: &hir::Attrs, defining_crate: hir::Crate) -> bool { let module = match self.scope.module() { Some(it) => it, None => return true, }; if module.krate() != defining_crate && attrs.has_doc_hidden() { // `doc(hidden)` items are only completed within the defining crate. return true; } false } fn fill_impl_def(&mut self) { self.impl_def = self .sema .token_ancestors_with_macros(self.token.clone()) .take_while(|it| it.kind() != SOURCE_FILE && it.kind() != MODULE) .find_map(ast::Impl::cast); } fn expected_type_and_name(&self) -> (Option, Option) { let mut node = match self.token.parent() { Some(it) => it, None => return (None, None), }; loop { break match_ast! { match node { ast::LetStmt(it) => { cov_mark::hit!(expected_type_let_with_leading_char); cov_mark::hit!(expected_type_let_without_leading_char); let ty = it.pat() .and_then(|pat| self.sema.type_of_pat(&pat)) .or_else(|| it.initializer().and_then(|it| self.sema.type_of_expr(&it))) .map(TypeInfo::original); let name = if let Some(ast::Pat::IdentPat(ident)) = it.pat() { ident.name().map(NameOrNameRef::Name) } else { None }; (ty, name) }, ast::ArgList(_it) => { cov_mark::hit!(expected_type_fn_param); ActiveParameter::at_token( &self.sema, self.token.clone(), ).map(|ap| { let name = ap.ident().map(NameOrNameRef::Name); let ty = if has_ref(&self.token) { cov_mark::hit!(expected_type_fn_param_ref); ap.ty.remove_ref() } else { Some(ap.ty) }; (ty, name) }) .unwrap_or((None, None)) }, ast::RecordExprFieldList(it) => { // wouldn't try {} be nice... (|| { if self.token.kind() == T![..] || self.token.prev_token().map(|t| t.kind()) == Some(T![..]) { cov_mark::hit!(expected_type_struct_func_update); let record_expr = it.syntax().parent().and_then(ast::RecordExpr::cast)?; let ty = self.sema.type_of_expr(&record_expr.into())?; Some(( Some(ty.original), None )) } else { cov_mark::hit!(expected_type_struct_field_without_leading_char); let expr_field = self.token.prev_sibling_or_token()? .into_node() .and_then(ast::RecordExprField::cast)?; let (_, _, ty) = self.sema.resolve_record_field(&expr_field)?; Some(( Some(ty), expr_field.field_name().map(NameOrNameRef::NameRef), )) } })().unwrap_or((None, None)) }, ast::RecordExprField(it) => { cov_mark::hit!(expected_type_struct_field_with_leading_char); ( it.expr().as_ref().and_then(|e| self.sema.type_of_expr(e)).map(TypeInfo::original), it.field_name().map(NameOrNameRef::NameRef), ) }, ast::MatchExpr(it) => { cov_mark::hit!(expected_type_match_arm_without_leading_char); let ty = it.expr().and_then(|e| self.sema.type_of_expr(&e)).map(TypeInfo::original); (ty, None) }, ast::IfExpr(it) => { cov_mark::hit!(expected_type_if_let_without_leading_char); let ty = it.condition() .and_then(|cond| cond.expr()) .and_then(|e| self.sema.type_of_expr(&e)) .map(TypeInfo::original); (ty, None) }, ast::IdentPat(it) => { cov_mark::hit!(expected_type_if_let_with_leading_char); cov_mark::hit!(expected_type_match_arm_with_leading_char); let ty = self.sema.type_of_pat(&ast::Pat::from(it)).map(TypeInfo::original); (ty, None) }, ast::Fn(it) => { cov_mark::hit!(expected_type_fn_ret_with_leading_char); cov_mark::hit!(expected_type_fn_ret_without_leading_char); let def = self.sema.to_def(&it); (def.map(|def| def.ret_type(self.db)), None) }, ast::ClosureExpr(it) => { let ty = self.sema.type_of_expr(&it.into()); ty.and_then(|ty| ty.original.as_callable(self.db)) .map(|c| (Some(c.return_type()), None)) .unwrap_or((None, None)) }, ast::Stmt(_it) => (None, None), ast::Item(__) => (None, None), _ => { match node.parent() { Some(n) => { node = n; continue; }, None => (None, None), } }, } }; } } fn fill( &mut self, original_file: &SyntaxNode, file_with_fake_ident: SyntaxNode, offset: TextSize, ) { let fake_ident_token = file_with_fake_ident.token_at_offset(offset).right_biased().unwrap(); let syntax_element = NodeOrToken::Token(fake_ident_token); self.previous_token = previous_token(syntax_element.clone()); self.attribute_under_caret = syntax_element.ancestors().find_map(ast::Attr::cast); self.no_completion_required = { let inside_impl_trait_block = inside_impl_trait_block(syntax_element.clone()); let fn_is_prev = self.previous_token_is(T![fn]); let for_is_prev2 = for_is_prev2(syntax_element.clone()); (fn_is_prev && !inside_impl_trait_block) || for_is_prev2 }; self.incomplete_let = syntax_element.ancestors().take(6).find_map(ast::LetStmt::cast).map_or(false, |it| { it.syntax().text_range().end() == syntax_element.text_range().end() }); let (expected_type, expected_name) = self.expected_type_and_name(); self.expected_type = expected_type; self.expected_name = expected_name; let name_like = match find_node_at_offset(&file_with_fake_ident, offset) { Some(it) => it, None => return, }; self.completion_location = determine_location(&self.sema, original_file, offset, &name_like); self.prev_sibling = determine_prev_sibling(&name_like); self.name_syntax = find_node_at_offset(original_file, name_like.syntax().text_range().start()); match name_like { ast::NameLike::Lifetime(lifetime) => { self.classify_lifetime(original_file, lifetime, offset); } ast::NameLike::NameRef(name_ref) => { self.classify_name_ref(original_file, name_ref); } ast::NameLike::Name(name) => { self.classify_name(name); } } } fn classify_lifetime( &mut self, original_file: &SyntaxNode, lifetime: ast::Lifetime, offset: TextSize, ) { if let Some(parent) = lifetime.syntax().parent() { if parent.kind() == ERROR { return; } match_ast! { match parent { ast::LifetimeParam(_it) => { self.lifetime_allowed = true; self.lifetime_param_syntax = self.sema.find_node_at_offset_with_macros(original_file, offset); }, ast::BreakExpr(_it) => self.is_label_ref = true, ast::ContinueExpr(_it) => self.is_label_ref = true, ast::Label(_it) => (), _ => self.lifetime_allowed = true, } } } } fn classify_name(&mut self, name: ast::Name) { self.fill_impl_def(); if let Some(bind_pat) = name.syntax().parent().and_then(ast::IdentPat::cast) { let is_name_in_field_pat = bind_pat .syntax() .parent() .and_then(ast::RecordPatField::cast) .map_or(false, |pat_field| pat_field.name_ref().is_none()); if is_name_in_field_pat { return; } if bind_pat.is_simple_ident() { let mut is_param = None; let refutability = bind_pat .syntax() .ancestors() .skip_while(|it| ast::Pat::can_cast(it.kind())) .next() .map_or(PatternRefutability::Irrefutable, |node| { match_ast! { match node { ast::LetStmt(__) => PatternRefutability::Irrefutable, ast::Param(param) => { let is_closure_param = param .syntax() .ancestors() .nth(2) .and_then(ast::ClosureExpr::cast) .is_some(); is_param = Some(if is_closure_param { ParamKind::Closure } else { ParamKind::Function }); PatternRefutability::Irrefutable }, ast::MatchArm(__) => PatternRefutability::Refutable, ast::Condition(__) => PatternRefutability::Refutable, ast::ForExpr(__) => PatternRefutability::Irrefutable, _ => PatternRefutability::Irrefutable, } } }); self.pattern_ctx = Some(PatternContext { refutability, is_param }); } } } fn classify_name_ref(&mut self, original_file: &SyntaxNode, name_ref: ast::NameRef) { self.fill_impl_def(); self.function_def = self .sema .token_ancestors_with_macros(self.token.clone()) .take_while(|it| it.kind() != SOURCE_FILE && it.kind() != MODULE) .find_map(ast::Fn::cast); let parent = match name_ref.syntax().parent() { Some(it) => it, None => return, }; if let Some(segment) = ast::PathSegment::cast(parent) { let path_ctx = self.path_context.get_or_insert(PathCompletionContext { call_kind: None, is_trivial_path: false, qualifier: None, has_type_args: false, can_be_stmt: false, in_loop_body: false, use_tree_parent: false, kind: None, }); path_ctx.in_loop_body = is_in_loop_body(name_ref.syntax()); let path = segment.parent_path(); if let Some(p) = path.syntax().parent() { path_ctx.call_kind = match_ast! { match p { ast::PathExpr(it) => it.syntax().parent().and_then(ast::CallExpr::cast).map(|_| CallKind::Expr), ast::MacroCall(it) => it.excl_token().and(Some(CallKind::Mac)), ast::TupleStructPat(_it) => Some(CallKind::Pat), _ => None } }; } if let Some(parent) = path.syntax().parent() { path_ctx.kind = match_ast! { match parent { ast::PathType(_it) => Some(PathKind::Type), ast::PathExpr(_it) => Some(PathKind::Expr), _ => None, } }; } path_ctx.has_type_args = segment.generic_arg_list().is_some(); if let Some((path, use_tree_parent)) = path_or_use_tree_qualifier(&path) { path_ctx.use_tree_parent = use_tree_parent; path_ctx.qualifier = path .segment() .and_then(|it| { find_node_with_range::( original_file, it.syntax().text_range(), ) }) .map(|it| it.parent_path()); return; } if let Some(segment) = path.segment() { if segment.coloncolon_token().is_some() { return; } } path_ctx.is_trivial_path = true; // Find either enclosing expr statement (thing with `;`) or a // block. If block, check that we are the last expr. path_ctx.can_be_stmt = name_ref .syntax() .ancestors() .find_map(|node| { if let Some(stmt) = ast::ExprStmt::cast(node.clone()) { return Some(stmt.syntax().text_range() == name_ref.syntax().text_range()); } if let Some(stmt_list) = ast::StmtList::cast(node) { return Some( stmt_list.tail_expr().map(|e| e.syntax().text_range()) == Some(name_ref.syntax().text_range()), ); } None }) .unwrap_or(false); } } } fn find_node_with_range(syntax: &SyntaxNode, range: TextRange) -> Option { syntax.covering_element(range).ancestors().find_map(N::cast) } fn path_or_use_tree_qualifier(path: &ast::Path) -> Option<(ast::Path, bool)> { if let Some(qual) = path.qualifier() { return Some((qual, false)); } let use_tree_list = path.syntax().ancestors().find_map(ast::UseTreeList::cast)?; let use_tree = use_tree_list.syntax().parent().and_then(ast::UseTree::cast)?; use_tree.path().zip(Some(true)) } fn has_ref(token: &SyntaxToken) -> bool { let mut token = token.clone(); for skip in [WHITESPACE, IDENT, T![mut]] { if token.kind() == skip { token = match token.prev_token() { Some(it) => it, None => return false, } } } token.kind() == T![&] } #[cfg(test)] mod tests { use expect_test::{expect, Expect}; use hir::HirDisplay; use crate::tests::{position, TEST_CONFIG}; use super::CompletionContext; fn check_expected_type_and_name(ra_fixture: &str, expect: Expect) { let (db, pos) = position(ra_fixture); let completion_context = CompletionContext::new(&db, pos, &TEST_CONFIG).unwrap(); let ty = completion_context .expected_type .map(|t| t.display_test(&db).to_string()) .unwrap_or("?".to_owned()); let name = completion_context .expected_name .map_or_else(|| "?".to_owned(), |name| name.to_string()); expect.assert_eq(&format!("ty: {}, name: {}", ty, name)); } #[test] fn expected_type_let_without_leading_char() { cov_mark::check!(expected_type_let_without_leading_char); check_expected_type_and_name( r#" fn foo() { let x: u32 = $0; } "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_let_with_leading_char() { cov_mark::check!(expected_type_let_with_leading_char); check_expected_type_and_name( r#" fn foo() { let x: u32 = c$0; } "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_let_pat() { check_expected_type_and_name( r#" fn foo() { let x$0 = 0u32; } "#, expect![[r#"ty: u32, name: ?"#]], ); check_expected_type_and_name( r#" fn foo() { let $0 = 0u32; } "#, expect![[r#"ty: u32, name: ?"#]], ); } #[test] fn expected_type_fn_param() { cov_mark::check!(expected_type_fn_param); check_expected_type_and_name( r#" fn foo() { bar($0); } fn bar(x: u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); check_expected_type_and_name( r#" fn foo() { bar(c$0); } fn bar(x: u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_fn_param_ref() { cov_mark::check!(expected_type_fn_param_ref); check_expected_type_and_name( r#" fn foo() { bar(&$0); } fn bar(x: &u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); check_expected_type_and_name( r#" fn foo() { bar(&mut $0); } fn bar(x: &mut u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); check_expected_type_and_name( r#" fn foo() { bar(&c$0); } fn bar(x: &u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_struct_field_without_leading_char() { cov_mark::check!(expected_type_struct_field_without_leading_char); check_expected_type_and_name( r#" struct Foo { a: u32 } fn foo() { Foo { a: $0 }; } "#, expect![[r#"ty: u32, name: a"#]], ) } #[test] fn expected_type_generic_struct_field() { check_expected_type_and_name( r#" struct Foo { a: T } fn foo() -> Foo { Foo { a: $0 } } "#, expect![[r#"ty: u32, name: a"#]], ) } #[test] fn expected_type_struct_field_with_leading_char() { cov_mark::check!(expected_type_struct_field_with_leading_char); check_expected_type_and_name( r#" struct Foo { a: u32 } fn foo() { Foo { a: c$0 }; } "#, expect![[r#"ty: u32, name: a"#]], ); } #[test] fn expected_type_match_arm_without_leading_char() { cov_mark::check!(expected_type_match_arm_without_leading_char); check_expected_type_and_name( r#" enum E { X } fn foo() { match E::X { $0 } } "#, expect![[r#"ty: E, name: ?"#]], ); } #[test] fn expected_type_match_arm_with_leading_char() { cov_mark::check!(expected_type_match_arm_with_leading_char); check_expected_type_and_name( r#" enum E { X } fn foo() { match E::X { c$0 } } "#, expect![[r#"ty: E, name: ?"#]], ); } #[test] fn expected_type_if_let_without_leading_char() { cov_mark::check!(expected_type_if_let_without_leading_char); check_expected_type_and_name( r#" enum Foo { Bar, Baz, Quux } fn foo() { let f = Foo::Quux; if let $0 = f { } } "#, expect![[r#"ty: Foo, name: ?"#]], ) } #[test] fn expected_type_if_let_with_leading_char() { cov_mark::check!(expected_type_if_let_with_leading_char); check_expected_type_and_name( r#" enum Foo { Bar, Baz, Quux } fn foo() { let f = Foo::Quux; if let c$0 = f { } } "#, expect![[r#"ty: Foo, name: ?"#]], ) } #[test] fn expected_type_fn_ret_without_leading_char() { cov_mark::check!(expected_type_fn_ret_without_leading_char); check_expected_type_and_name( r#" fn foo() -> u32 { $0 } "#, expect![[r#"ty: u32, name: ?"#]], ) } #[test] fn expected_type_fn_ret_with_leading_char() { cov_mark::check!(expected_type_fn_ret_with_leading_char); check_expected_type_and_name( r#" fn foo() -> u32 { c$0 } "#, expect![[r#"ty: u32, name: ?"#]], ) } #[test] fn expected_type_fn_ret_fn_ref_fully_typed() { check_expected_type_and_name( r#" fn foo() -> u32 { foo$0 } "#, expect![[r#"ty: u32, name: ?"#]], ) } #[test] fn expected_type_closure_param_return() { // FIXME: make this work with `|| $0` check_expected_type_and_name( r#" //- minicore: fn fn foo() { bar(|| a$0); } fn bar(f: impl FnOnce() -> u32) {} "#, expect![[r#"ty: u32, name: ?"#]], ); } #[test] fn expected_type_generic_function() { check_expected_type_and_name( r#" fn foo() { bar::($0); } fn bar(t: T) {} "#, expect![[r#"ty: u32, name: t"#]], ); } #[test] fn expected_type_generic_method() { check_expected_type_and_name( r#" fn foo() { S(1u32).bar($0); } struct S(T); impl S { fn bar(self, t: T) {} } "#, expect![[r#"ty: u32, name: t"#]], ); } #[test] fn expected_type_functional_update() { cov_mark::check!(expected_type_struct_func_update); check_expected_type_and_name( r#" struct Foo { field: u32 } fn foo() { Foo { ..$0 } } "#, expect![[r#"ty: Foo, name: ?"#]], ); } }