//! The type system. We currently use this to infer types for completion, hover //! information and various assists. #![warn(rust_2018_idioms, unused_lifetimes, semicolon_in_expressions_from_macros)] #[allow(unused)] macro_rules! eprintln { ($($tt:tt)*) => { stdx::eprintln!($($tt)*) }; } mod autoderef; mod builder; mod chalk_db; mod chalk_ext; pub mod consteval; pub mod mir; mod infer; mod inhabitedness; mod interner; mod lower; mod mapping; mod tls; mod utils; pub mod db; pub mod diagnostics; pub mod display; pub mod method_resolution; pub mod primitive; pub mod traits; pub mod layout; pub mod lang_items; #[cfg(test)] mod tests; #[cfg(test)] mod test_db; use std::{collections::HashMap, hash::Hash, sync::Arc}; use chalk_ir::{ fold::{Shift, TypeFoldable}, interner::HasInterner, visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor}, NoSolution, TyData, }; use either::Either; use hir_def::{expr::ExprId, type_ref::Rawness, TypeOrConstParamId}; use hir_expand::name; use la_arena::{Arena, Idx}; use mir::MirEvalError; use rustc_hash::FxHashSet; use traits::FnTrait; use utils::Generics; use crate::{ consteval::unknown_const, db::HirDatabase, infer::unify::InferenceTable, utils::generics, }; pub use autoderef::autoderef; pub use builder::{ParamKind, TyBuilder}; pub use chalk_ext::*; pub use infer::{ could_coerce, could_unify, Adjust, Adjustment, AutoBorrow, BindingMode, InferenceDiagnostic, InferenceResult, OverloadedDeref, PointerCast, }; pub use interner::Interner; pub use lower::{ associated_type_shorthand_candidates, CallableDefId, ImplTraitLoweringMode, TyDefId, TyLoweringContext, ValueTyDefId, }; pub use mapping::{ from_assoc_type_id, from_chalk_trait_id, from_foreign_def_id, from_placeholder_idx, lt_from_placeholder_idx, to_assoc_type_id, to_chalk_trait_id, to_foreign_def_id, to_placeholder_idx, }; pub use traits::TraitEnvironment; pub use utils::{all_super_traits, is_fn_unsafe_to_call}; pub use chalk_ir::{ cast::Cast, AdtId, BoundVar, DebruijnIndex, Mutability, Safety, Scalar, TyVariableKind, }; pub type ForeignDefId = chalk_ir::ForeignDefId; pub type AssocTypeId = chalk_ir::AssocTypeId; pub type FnDefId = chalk_ir::FnDefId; pub type ClosureId = chalk_ir::ClosureId; pub type OpaqueTyId = chalk_ir::OpaqueTyId; pub type PlaceholderIndex = chalk_ir::PlaceholderIndex; pub type VariableKind = chalk_ir::VariableKind; pub type VariableKinds = chalk_ir::VariableKinds; pub type CanonicalVarKinds = chalk_ir::CanonicalVarKinds; /// Represents generic parameters and an item bound by them. When the item has parent, the binders /// also contain the generic parameters for its parent. See chalk's documentation for details. /// /// One thing to keep in mind when working with `Binders` (and `Substitution`s, which represent /// generic arguments) in rust-analyzer is that the ordering within *is* significant - the generic /// parameters/arguments for an item MUST come before those for its parent. This is to facilitate /// the integration with chalk-solve, which mildly puts constraints as such. See #13335 for its /// motivation in detail. pub type Binders = chalk_ir::Binders; /// Interned list of generic arguments for an item. When an item has parent, the `Substitution` for /// it contains generic arguments for both its parent and itself. See chalk's documentation for /// details. /// /// See `Binders` for the constraint on the ordering. pub type Substitution = chalk_ir::Substitution; pub type GenericArg = chalk_ir::GenericArg; pub type GenericArgData = chalk_ir::GenericArgData; pub type Ty = chalk_ir::Ty; pub type TyKind = chalk_ir::TyKind; pub type TypeFlags = chalk_ir::TypeFlags; pub type DynTy = chalk_ir::DynTy; pub type FnPointer = chalk_ir::FnPointer; // pub type FnSubst = chalk_ir::FnSubst; pub use chalk_ir::FnSubst; pub type ProjectionTy = chalk_ir::ProjectionTy; pub type AliasTy = chalk_ir::AliasTy; pub type OpaqueTy = chalk_ir::OpaqueTy; pub type InferenceVar = chalk_ir::InferenceVar; pub type Lifetime = chalk_ir::Lifetime; pub type LifetimeData = chalk_ir::LifetimeData; pub type LifetimeOutlives = chalk_ir::LifetimeOutlives; pub type Const = chalk_ir::Const; pub type ConstData = chalk_ir::ConstData; pub type ConstValue = chalk_ir::ConstValue; pub type ConcreteConst = chalk_ir::ConcreteConst; pub type ChalkTraitId = chalk_ir::TraitId; pub type TraitRef = chalk_ir::TraitRef; pub type QuantifiedWhereClause = Binders; pub type QuantifiedWhereClauses = chalk_ir::QuantifiedWhereClauses; pub type Canonical = chalk_ir::Canonical; pub type FnSig = chalk_ir::FnSig; pub type InEnvironment = chalk_ir::InEnvironment; pub type Environment = chalk_ir::Environment; pub type DomainGoal = chalk_ir::DomainGoal; pub type Goal = chalk_ir::Goal; pub type AliasEq = chalk_ir::AliasEq; pub type Solution = chalk_solve::Solution; pub type ConstrainedSubst = chalk_ir::ConstrainedSubst; pub type Guidance = chalk_solve::Guidance; pub type WhereClause = chalk_ir::WhereClause; /// A constant can have reference to other things. Memory map job is holding /// the neccessary bits of memory of the const eval session to keep the constant /// meaningful. #[derive(Debug, Default, Clone, PartialEq, Eq)] pub struct MemoryMap(pub HashMap>); impl MemoryMap { fn insert(&mut self, addr: usize, x: Vec) { self.0.insert(addr, x); } /// This functions convert each address by a function `f` which gets the byte intervals and assign an address /// to them. It is useful when you want to load a constant with a memory map in a new memory. You can pass an /// allocator function as `f` and it will return a mapping of old addresses to new addresses. fn transform_addresses( &self, mut f: impl FnMut(&[u8]) -> Result, ) -> Result, MirEvalError> { self.0.iter().map(|x| Ok((*x.0, f(x.1)?))).collect() } } /// A concrete constant value #[derive(Debug, Clone, PartialEq, Eq)] pub enum ConstScalar { Bytes(Vec, MemoryMap), /// Case of an unknown value that rustc might know but we don't // FIXME: this is a hack to get around chalk not being able to represent unevaluatable // constants // https://github.com/rust-lang/rust-analyzer/pull/8813#issuecomment-840679177 // https://rust-lang.zulipchat.com/#narrow/stream/144729-wg-traits/topic/Handling.20non.20evaluatable.20constants'.20equality/near/238386348 Unknown, } impl Hash for ConstScalar { fn hash(&self, state: &mut H) { core::mem::discriminant(self).hash(state); if let ConstScalar::Bytes(b, _) = self { b.hash(state) } } } /// Return an index of a parameter in the generic type parameter list by it's id. pub fn param_idx(db: &dyn HirDatabase, id: TypeOrConstParamId) -> Option { generics(db.upcast(), id.parent).param_idx(id) } pub(crate) fn wrap_empty_binders(value: T) -> Binders where T: TypeFoldable + HasInterner, { Binders::empty(Interner, value.shifted_in_from(Interner, DebruijnIndex::ONE)) } pub(crate) fn make_type_and_const_binders>( which_is_const: impl Iterator>, value: T, ) -> Binders { Binders::new( VariableKinds::from_iter( Interner, which_is_const.map(|x| { if let Some(ty) = x { chalk_ir::VariableKind::Const(ty) } else { chalk_ir::VariableKind::Ty(chalk_ir::TyVariableKind::General) } }), ), value, ) } pub(crate) fn make_single_type_binders>( value: T, ) -> Binders { Binders::new( VariableKinds::from_iter( Interner, std::iter::once(chalk_ir::VariableKind::Ty(chalk_ir::TyVariableKind::General)), ), value, ) } pub(crate) fn make_binders_with_count>( db: &dyn HirDatabase, count: usize, generics: &Generics, value: T, ) -> Binders { let it = generics.iter_id().take(count).map(|id| match id { Either::Left(_) => None, Either::Right(id) => Some(db.const_param_ty(id)), }); crate::make_type_and_const_binders(it, value) } pub(crate) fn make_binders>( db: &dyn HirDatabase, generics: &Generics, value: T, ) -> Binders { make_binders_with_count(db, usize::MAX, generics, value) } // FIXME: get rid of this, just replace it by FnPointer /// A function signature as seen by type inference: Several parameter types and /// one return type. #[derive(Clone, PartialEq, Eq, Debug)] pub struct CallableSig { params_and_return: Arc<[Ty]>, is_varargs: bool, safety: Safety, } has_interner!(CallableSig); /// A polymorphic function signature. pub type PolyFnSig = Binders; impl CallableSig { pub fn from_params_and_return( mut params: Vec, ret: Ty, is_varargs: bool, safety: Safety, ) -> CallableSig { params.push(ret); CallableSig { params_and_return: params.into(), is_varargs, safety } } pub fn from_fn_ptr(fn_ptr: &FnPointer) -> CallableSig { CallableSig { // FIXME: what to do about lifetime params? -> return PolyFnSig params_and_return: fn_ptr .substitution .clone() .shifted_out_to(Interner, DebruijnIndex::ONE) .expect("unexpected lifetime vars in fn ptr") .0 .as_slice(Interner) .iter() .map(|arg| arg.assert_ty_ref(Interner).clone()) .collect(), is_varargs: fn_ptr.sig.variadic, safety: fn_ptr.sig.safety, } } pub fn to_fn_ptr(&self) -> FnPointer { FnPointer { num_binders: 0, sig: FnSig { abi: (), safety: self.safety, variadic: self.is_varargs }, substitution: FnSubst(Substitution::from_iter( Interner, self.params_and_return.iter().cloned(), )), } } pub fn params(&self) -> &[Ty] { &self.params_and_return[0..self.params_and_return.len() - 1] } pub fn ret(&self) -> &Ty { &self.params_and_return[self.params_and_return.len() - 1] } } impl TypeFoldable for CallableSig { fn try_fold_with( self, folder: &mut dyn chalk_ir::fold::FallibleTypeFolder, outer_binder: DebruijnIndex, ) -> Result { let vec = self.params_and_return.to_vec(); let folded = vec.try_fold_with(folder, outer_binder)?; Ok(CallableSig { params_and_return: folded.into(), is_varargs: self.is_varargs, safety: self.safety, }) } } #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)] pub enum ImplTraitId { ReturnTypeImplTrait(hir_def::FunctionId, RpitId), AsyncBlockTypeImplTrait(hir_def::DefWithBodyId, ExprId), } #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct ReturnTypeImplTraits { pub(crate) impl_traits: Arena, } has_interner!(ReturnTypeImplTraits); #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct ReturnTypeImplTrait { pub(crate) bounds: Binders>, } pub type RpitId = Idx; pub fn static_lifetime() -> Lifetime { LifetimeData::Static.intern(Interner) } pub(crate) fn fold_free_vars + TypeFoldable>( t: T, for_ty: impl FnMut(BoundVar, DebruijnIndex) -> Ty, for_const: impl FnMut(Ty, BoundVar, DebruijnIndex) -> Const, ) -> T { use chalk_ir::fold::TypeFolder; #[derive(chalk_derive::FallibleTypeFolder)] #[has_interner(Interner)] struct FreeVarFolder< F1: FnMut(BoundVar, DebruijnIndex) -> Ty, F2: FnMut(Ty, BoundVar, DebruijnIndex) -> Const, >(F1, F2); impl< F1: FnMut(BoundVar, DebruijnIndex) -> Ty, F2: FnMut(Ty, BoundVar, DebruijnIndex) -> Const, > TypeFolder for FreeVarFolder { fn as_dyn(&mut self) -> &mut dyn TypeFolder { self } fn interner(&self) -> Interner { Interner } fn fold_free_var_ty(&mut self, bound_var: BoundVar, outer_binder: DebruijnIndex) -> Ty { self.0(bound_var, outer_binder) } fn fold_free_var_const( &mut self, ty: Ty, bound_var: BoundVar, outer_binder: DebruijnIndex, ) -> Const { self.1(ty, bound_var, outer_binder) } } t.fold_with(&mut FreeVarFolder(for_ty, for_const), DebruijnIndex::INNERMOST) } pub(crate) fn fold_tys + TypeFoldable>( t: T, mut for_ty: impl FnMut(Ty, DebruijnIndex) -> Ty, binders: DebruijnIndex, ) -> T { fold_tys_and_consts( t, |x, d| match x { Either::Left(x) => Either::Left(for_ty(x, d)), Either::Right(x) => Either::Right(x), }, binders, ) } pub(crate) fn fold_tys_and_consts + TypeFoldable>( t: T, f: impl FnMut(Either, DebruijnIndex) -> Either, binders: DebruijnIndex, ) -> T { use chalk_ir::fold::{TypeFolder, TypeSuperFoldable}; #[derive(chalk_derive::FallibleTypeFolder)] #[has_interner(Interner)] struct TyFolder, DebruijnIndex) -> Either>(F); impl, DebruijnIndex) -> Either> TypeFolder for TyFolder { fn as_dyn(&mut self) -> &mut dyn TypeFolder { self } fn interner(&self) -> Interner { Interner } fn fold_ty(&mut self, ty: Ty, outer_binder: DebruijnIndex) -> Ty { let ty = ty.super_fold_with(self.as_dyn(), outer_binder); self.0(Either::Left(ty), outer_binder).left().unwrap() } fn fold_const(&mut self, c: Const, outer_binder: DebruijnIndex) -> Const { self.0(Either::Right(c), outer_binder).right().unwrap() } } t.fold_with(&mut TyFolder(f), binders) } /// 'Canonicalizes' the `t` by replacing any errors with new variables. Also /// ensures there are no unbound variables or inference variables anywhere in /// the `t`. pub fn replace_errors_with_variables(t: &T) -> Canonical where T: HasInterner + TypeFoldable + Clone, { use chalk_ir::{ fold::{FallibleTypeFolder, TypeSuperFoldable}, Fallible, }; struct ErrorReplacer { vars: usize, } impl FallibleTypeFolder for ErrorReplacer { type Error = NoSolution; fn as_dyn(&mut self) -> &mut dyn FallibleTypeFolder { self } fn interner(&self) -> Interner { Interner } fn try_fold_ty(&mut self, ty: Ty, outer_binder: DebruijnIndex) -> Fallible { if let TyKind::Error = ty.kind(Interner) { let index = self.vars; self.vars += 1; Ok(TyKind::BoundVar(BoundVar::new(outer_binder, index)).intern(Interner)) } else { ty.try_super_fold_with(self.as_dyn(), outer_binder) } } fn try_fold_inference_ty( &mut self, _var: InferenceVar, _kind: TyVariableKind, _outer_binder: DebruijnIndex, ) -> Fallible { if cfg!(debug_assertions) { // we don't want to just panic here, because then the error message // won't contain the whole thing, which would not be very helpful Err(NoSolution) } else { Ok(TyKind::Error.intern(Interner)) } } fn try_fold_free_var_ty( &mut self, _bound_var: BoundVar, _outer_binder: DebruijnIndex, ) -> Fallible { if cfg!(debug_assertions) { // we don't want to just panic here, because then the error message // won't contain the whole thing, which would not be very helpful Err(NoSolution) } else { Ok(TyKind::Error.intern(Interner)) } } fn try_fold_inference_const( &mut self, ty: Ty, _var: InferenceVar, _outer_binder: DebruijnIndex, ) -> Fallible { if cfg!(debug_assertions) { Err(NoSolution) } else { Ok(unknown_const(ty)) } } fn try_fold_free_var_const( &mut self, ty: Ty, _bound_var: BoundVar, _outer_binder: DebruijnIndex, ) -> Fallible { if cfg!(debug_assertions) { Err(NoSolution) } else { Ok(unknown_const(ty)) } } fn try_fold_inference_lifetime( &mut self, _var: InferenceVar, _outer_binder: DebruijnIndex, ) -> Fallible { if cfg!(debug_assertions) { Err(NoSolution) } else { Ok(static_lifetime()) } } fn try_fold_free_var_lifetime( &mut self, _bound_var: BoundVar, _outer_binder: DebruijnIndex, ) -> Fallible { if cfg!(debug_assertions) { Err(NoSolution) } else { Ok(static_lifetime()) } } } let mut error_replacer = ErrorReplacer { vars: 0 }; let value = match t.clone().try_fold_with(&mut error_replacer, DebruijnIndex::INNERMOST) { Ok(t) => t, Err(_) => panic!("Encountered unbound or inference vars in {t:?}"), }; let kinds = (0..error_replacer.vars).map(|_| { chalk_ir::CanonicalVarKind::new( chalk_ir::VariableKind::Ty(TyVariableKind::General), chalk_ir::UniverseIndex::ROOT, ) }); Canonical { value, binders: chalk_ir::CanonicalVarKinds::from_iter(Interner, kinds) } } pub fn callable_sig_from_fnonce( self_ty: &Ty, env: Arc, db: &dyn HirDatabase, ) -> Option { let krate = env.krate; let fn_once_trait = FnTrait::FnOnce.get_id(db, krate)?; let output_assoc_type = db.trait_data(fn_once_trait).associated_type_by_name(&name![Output])?; let mut table = InferenceTable::new(db, env.clone()); let b = TyBuilder::trait_ref(db, fn_once_trait); if b.remaining() != 2 { return None; } // Register two obligations: // - Self: FnOnce // - >::Output == ?ret_ty let args_ty = table.new_type_var(); let trait_ref = b.push(self_ty.clone()).push(args_ty.clone()).build(); let projection = TyBuilder::assoc_type_projection( db, output_assoc_type, Some(trait_ref.substitution.clone()), ) .build(); table.register_obligation(trait_ref.cast(Interner)); let ret_ty = table.normalize_projection_ty(projection); let ret_ty = table.resolve_completely(ret_ty); let args_ty = table.resolve_completely(args_ty); let params = args_ty.as_tuple()?.iter(Interner).map(|it| it.assert_ty_ref(Interner)).cloned().collect(); Some(CallableSig::from_params_and_return(params, ret_ty, false, Safety::Safe)) } struct PlaceholderCollector<'db> { db: &'db dyn HirDatabase, placeholders: FxHashSet, } impl PlaceholderCollector<'_> { fn collect(&mut self, idx: PlaceholderIndex) { let id = from_placeholder_idx(self.db, idx); self.placeholders.insert(id); } } impl TypeVisitor for PlaceholderCollector<'_> { type BreakTy = (); fn as_dyn(&mut self) -> &mut dyn TypeVisitor { self } fn interner(&self) -> Interner { Interner } fn visit_ty( &mut self, ty: &Ty, outer_binder: DebruijnIndex, ) -> std::ops::ControlFlow { let has_placeholder_bits = TypeFlags::HAS_TY_PLACEHOLDER | TypeFlags::HAS_CT_PLACEHOLDER; let TyData { kind, flags } = ty.data(Interner); if let TyKind::Placeholder(idx) = kind { self.collect(*idx); } else if flags.intersects(has_placeholder_bits) { return ty.super_visit_with(self, outer_binder); } else { // Fast path: don't visit inner types (e.g. generic arguments) when `flags` indicate // that there are no placeholders. } std::ops::ControlFlow::Continue(()) } fn visit_const( &mut self, constant: &chalk_ir::Const, _outer_binder: DebruijnIndex, ) -> std::ops::ControlFlow { if let chalk_ir::ConstValue::Placeholder(idx) = constant.data(Interner).value { self.collect(idx); } std::ops::ControlFlow::Continue(()) } } /// Returns unique placeholders for types and consts contained in `value`. pub fn collect_placeholders(value: &T, db: &dyn HirDatabase) -> Vec where T: ?Sized + TypeVisitable, { let mut collector = PlaceholderCollector { db, placeholders: FxHashSet::default() }; value.visit_with(&mut collector, DebruijnIndex::INNERMOST); collector.placeholders.into_iter().collect() }