//! This modules implements a function to resolve a path `foo::bar::baz` to a //! def, which is used within the name resolution. //! //! When name resolution is finished, the result of resolving a path is either //! `Some(def)` or `None`. However, when we are in process of resolving imports //! or macros, there's a third possibility: //! //! I can't resolve this path right now, but I might be resolve this path //! later, when more macros are expanded. //! //! `ReachedFixedPoint` signals about this. use base_db::Edition; use hir_expand::name::Name; use triomphe::Arc; use crate::{ db::DefDatabase, item_scope::BUILTIN_SCOPE, nameres::{sub_namespace_match, BlockInfo, BuiltinShadowMode, DefMap, MacroSubNs}, path::{ModPath, PathKind}, per_ns::PerNs, visibility::{RawVisibility, Visibility}, AdtId, CrateId, EnumVariantId, LocalModuleId, ModuleDefId, }; #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub(super) enum ResolveMode { Import, Other, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub(super) enum ReachedFixedPoint { Yes, No, } #[derive(Debug, Clone)] pub(super) struct ResolvePathResult { pub(super) resolved_def: PerNs, pub(super) segment_index: Option, pub(super) reached_fixedpoint: ReachedFixedPoint, pub(super) krate: Option, } impl ResolvePathResult { fn empty(reached_fixedpoint: ReachedFixedPoint) -> ResolvePathResult { ResolvePathResult::with(PerNs::none(), reached_fixedpoint, None, None) } fn with( resolved_def: PerNs, reached_fixedpoint: ReachedFixedPoint, segment_index: Option, krate: Option, ) -> ResolvePathResult { ResolvePathResult { resolved_def, segment_index, reached_fixedpoint, krate } } } impl PerNs { pub(super) fn filter_macro( mut self, db: &dyn DefDatabase, expected: Option, ) -> Self { self.macros = self.macros.filter(|&(id, _)| { let this = MacroSubNs::from_id(db, id); sub_namespace_match(Some(this), expected) }); self } } impl DefMap { pub(crate) fn resolve_visibility( &self, db: &dyn DefDatabase, // module to import to original_module: LocalModuleId, // pub(path) // ^^^^ this visibility: &RawVisibility, within_impl: bool, ) -> Option { let mut vis = match visibility { RawVisibility::Module(path) => { let (result, remaining) = self.resolve_path(db, original_module, path, BuiltinShadowMode::Module, None); if remaining.is_some() { return None; } let types = result.take_types()?; match types { ModuleDefId::ModuleId(m) => Visibility::Module(m), _ => { // error: visibility needs to refer to module return None; } } } RawVisibility::Public => Visibility::Public, }; // In block expressions, `self` normally refers to the containing non-block module, and // `super` to its parent (etc.). However, visibilities must only refer to a module in the // DefMap they're written in, so we restrict them when that happens. if let Visibility::Module(m) = vis { // ...unless we're resolving visibility for an associated item in an impl. if self.block_id() != m.block && !within_impl { cov_mark::hit!(adjust_vis_in_block_def_map); vis = Visibility::Module(self.module_id(Self::ROOT)); tracing::debug!("visibility {:?} points outside DefMap, adjusting to {:?}", m, vis); } } Some(vis) } // Returns Yes if we are sure that additions to `ItemMap` wouldn't change // the result. pub(super) fn resolve_path_fp_with_macro( &self, db: &dyn DefDatabase, mode: ResolveMode, // module to import to mut original_module: LocalModuleId, path: &ModPath, shadow: BuiltinShadowMode, // Pass `MacroSubNs` if we know we're resolving macro names and which kind of macro we're // resolving them to. Pass `None` otherwise, e.g. when we're resolving import paths. expected_macro_subns: Option, ) -> ResolvePathResult { let mut result = ResolvePathResult::empty(ReachedFixedPoint::No); let mut arc; let mut current_map = self; loop { let new = current_map.resolve_path_fp_with_macro_single( db, mode, original_module, path, shadow, expected_macro_subns, ); // Merge `new` into `result`. result.resolved_def = result.resolved_def.or(new.resolved_def); if result.reached_fixedpoint == ReachedFixedPoint::No { result.reached_fixedpoint = new.reached_fixedpoint; } // FIXME: this doesn't seem right; what if the different namespace resolutions come from different crates? result.krate = result.krate.or(new.krate); result.segment_index = match (result.segment_index, new.segment_index) { (Some(idx), None) => Some(idx), (Some(old), Some(new)) => Some(old.max(new)), (None, new) => new, }; match current_map.block { Some(block) if original_module == Self::ROOT => { // Block modules "inherit" names from its parent module. original_module = block.parent.local_id; arc = block.parent.def_map(db, current_map.krate); current_map = &arc; } // Proper (non-block) modules, including those in block `DefMap`s, don't. _ => return result, } } } pub(super) fn resolve_path_fp_with_macro_single( &self, db: &dyn DefDatabase, mode: ResolveMode, original_module: LocalModuleId, path: &ModPath, shadow: BuiltinShadowMode, expected_macro_subns: Option, ) -> ResolvePathResult { let graph = db.crate_graph(); let _cx = stdx::panic_context::enter(format!( "DefMap {:?} crate_name={:?} block={:?} path={}", self.krate, graph[self.krate].display_name, self.block, path.display(db.upcast()) )); let mut segments = path.segments().iter().enumerate(); let mut curr_per_ns: PerNs = match path.kind { PathKind::DollarCrate(krate) => { if krate == self.krate { cov_mark::hit!(macro_dollar_crate_self); PerNs::types(self.crate_root().into(), Visibility::Public) } else { let def_map = db.crate_def_map(krate); let module = def_map.module_id(Self::ROOT); cov_mark::hit!(macro_dollar_crate_other); PerNs::types(module.into(), Visibility::Public) } } PathKind::Crate => PerNs::types(self.crate_root().into(), Visibility::Public), // plain import or absolute path in 2015: crate-relative with // fallback to extern prelude (with the simplification in // rust-lang/rust#57745) // FIXME there must be a nicer way to write this condition PathKind::Plain | PathKind::Abs if self.data.edition == Edition::Edition2015 && (path.kind == PathKind::Abs || mode == ResolveMode::Import) => { let (_, segment) = match segments.next() { Some((idx, segment)) => (idx, segment), None => return ResolvePathResult::empty(ReachedFixedPoint::Yes), }; tracing::debug!("resolving {:?} in crate root (+ extern prelude)", segment); self.resolve_name_in_crate_root_or_extern_prelude(db, segment) } PathKind::Plain => { let (_, segment) = match segments.next() { Some((idx, segment)) => (idx, segment), None => return ResolvePathResult::empty(ReachedFixedPoint::Yes), }; // The first segment may be a builtin type. If the path has more // than one segment, we first try resolving it as a module // anyway. // FIXME: If the next segment doesn't resolve in the module and // BuiltinShadowMode wasn't Module, then we need to try // resolving it as a builtin. let prefer_module = if path.segments().len() == 1 { shadow } else { BuiltinShadowMode::Module }; tracing::debug!("resolving {:?} in module", segment); self.resolve_name_in_module( db, original_module, segment, prefer_module, expected_macro_subns, ) } PathKind::Super(lvl) => { let mut local_id = original_module; let mut ext; let mut def_map = self; // Adjust `local_id` to `self`, i.e. the nearest non-block module. if def_map.module_id(local_id).is_block_module() { (ext, local_id) = adjust_to_nearest_non_block_module(db, def_map, local_id); def_map = &ext; } // Go up the module tree but skip block modules as `super` always refers to the // nearest non-block module. for _ in 0..lvl { // Loop invariant: at the beginning of each loop, `local_id` must refer to a // non-block module. if let Some(parent) = def_map.modules[local_id].parent { local_id = parent; if def_map.module_id(local_id).is_block_module() { (ext, local_id) = adjust_to_nearest_non_block_module(db, def_map, local_id); def_map = &ext; } } else { stdx::always!(def_map.block.is_none()); tracing::debug!("super path in root module"); return ResolvePathResult::empty(ReachedFixedPoint::Yes); } } let module = def_map.module_id(local_id); stdx::never!(module.is_block_module()); if self.block != def_map.block { // If we have a different `DefMap` from `self` (the orignal `DefMap` we started // with), resolve the remaining path segments in that `DefMap`. let path = ModPath::from_segments(PathKind::Super(0), path.segments().iter().cloned()); return def_map.resolve_path_fp_with_macro( db, mode, local_id, &path, shadow, expected_macro_subns, ); } PerNs::types(module.into(), Visibility::Public) } PathKind::Abs => { // 2018-style absolute path -- only extern prelude let segment = match segments.next() { Some((_, segment)) => segment, None => return ResolvePathResult::empty(ReachedFixedPoint::Yes), }; if let Some(&def) = self.data.extern_prelude.get(segment) { tracing::debug!("absolute path {:?} resolved to crate {:?}", path, def); PerNs::types(def.into(), Visibility::Public) } else { return ResolvePathResult::empty(ReachedFixedPoint::No); // extern crate declarations can add to the extern prelude } } }; for (i, segment) in segments { let (curr, vis) = match curr_per_ns.take_types_vis() { Some(r) => r, None => { // we still have path segments left, but the path so far // didn't resolve in the types namespace => no resolution // (don't break here because `curr_per_ns` might contain // something in the value namespace, and it would be wrong // to return that) return ResolvePathResult::empty(ReachedFixedPoint::No); } }; // resolve segment in curr curr_per_ns = match curr { ModuleDefId::ModuleId(module) => { if module.krate != self.krate { let path = ModPath::from_segments( PathKind::Super(0), path.segments()[i..].iter().cloned(), ); tracing::debug!("resolving {:?} in other crate", path); let defp_map = module.def_map(db); // Macro sub-namespaces only matter when resolving single-segment paths // because `macro_use` and other preludes should be taken into account. At // this point, we know we're resolving a multi-segment path so macro kind // expectation is discarded. let (def, s) = defp_map.resolve_path(db, module.local_id, &path, shadow, None); return ResolvePathResult::with( def, ReachedFixedPoint::Yes, s.map(|s| s + i), Some(module.krate), ); } let def_map; let module_data = if module.block == self.block_id() { &self[module.local_id] } else { def_map = module.def_map(db); &def_map[module.local_id] }; // Since it is a qualified path here, it should not contains legacy macros module_data.scope.get(segment) } ModuleDefId::AdtId(AdtId::EnumId(e)) => { // enum variant cov_mark::hit!(can_import_enum_variant); let enum_data = db.enum_data(e); match enum_data.variant(segment) { Some(local_id) => { let variant = EnumVariantId { parent: e, local_id }; match &*enum_data.variants[local_id].variant_data { crate::data::adt::VariantData::Record(_) => { PerNs::types(variant.into(), Visibility::Public) } crate::data::adt::VariantData::Tuple(_) | crate::data::adt::VariantData::Unit => { PerNs::both(variant.into(), variant.into(), Visibility::Public) } } } None => { return ResolvePathResult::with( PerNs::types(e.into(), vis), ReachedFixedPoint::Yes, Some(i), Some(self.krate), ); } } } s => { // could be an inherent method call in UFCS form // (`Struct::method`), or some other kind of associated item tracing::debug!( "path segment {:?} resolved to non-module {:?}, but is not last", segment, curr, ); return ResolvePathResult::with( PerNs::types(s, vis), ReachedFixedPoint::Yes, Some(i), Some(self.krate), ); } }; curr_per_ns = curr_per_ns .filter_visibility(|vis| vis.is_visible_from_def_map(db, self, original_module)); } ResolvePathResult::with(curr_per_ns, ReachedFixedPoint::Yes, None, Some(self.krate)) } fn resolve_name_in_module( &self, db: &dyn DefDatabase, module: LocalModuleId, name: &Name, shadow: BuiltinShadowMode, expected_macro_subns: Option, ) -> PerNs { // Resolve in: // - legacy scope of macro // - current module / scope // - extern prelude / macro_use prelude // - std prelude let from_legacy_macro = self[module] .scope .get_legacy_macro(name) // FIXME: shadowing .and_then(|it| it.last()) .copied() .filter(|&id| { sub_namespace_match(Some(MacroSubNs::from_id(db, id)), expected_macro_subns) }) .map_or_else(PerNs::none, |m| PerNs::macros(m, Visibility::Public)); let from_scope = self[module].scope.get(name).filter_macro(db, expected_macro_subns); let from_builtin = match self.block { Some(_) => { // Only resolve to builtins in the root `DefMap`. PerNs::none() } None => BUILTIN_SCOPE.get(name).copied().unwrap_or_else(PerNs::none), }; let from_scope_or_builtin = match shadow { BuiltinShadowMode::Module => from_scope.or(from_builtin), BuiltinShadowMode::Other => match from_scope.take_types() { Some(ModuleDefId::ModuleId(_)) => from_builtin.or(from_scope), Some(_) | None => from_scope.or(from_builtin), }, }; let extern_prelude = || { if self.block.is_some() { // Don't resolve extern prelude in block `DefMap`s. return PerNs::none(); } self.data .extern_prelude .get(name) .map_or(PerNs::none(), |&it| PerNs::types(it.into(), Visibility::Public)) }; let macro_use_prelude = || { self.macro_use_prelude .get(name) .map_or(PerNs::none(), |&it| PerNs::macros(it.into(), Visibility::Public)) }; let prelude = || self.resolve_in_prelude(db, name); from_legacy_macro .or(from_scope_or_builtin) .or_else(extern_prelude) .or_else(macro_use_prelude) .or_else(prelude) } fn resolve_name_in_crate_root_or_extern_prelude( &self, db: &dyn DefDatabase, name: &Name, ) -> PerNs { let from_crate_root = match self.block { Some(_) => { let def_map = self.crate_root().def_map(db); def_map[Self::ROOT].scope.get(name) } None => self[Self::ROOT].scope.get(name), }; let from_extern_prelude = || { if self.block.is_some() { // Don't resolve extern prelude in block `DefMap`s. return PerNs::none(); } self.data .extern_prelude .get(name) .copied() .map_or(PerNs::none(), |it| PerNs::types(it.into(), Visibility::Public)) }; from_crate_root.or_else(from_extern_prelude) } fn resolve_in_prelude(&self, db: &dyn DefDatabase, name: &Name) -> PerNs { if let Some(prelude) = self.prelude { let keep; let def_map = if prelude.krate == self.krate { self } else { // Extend lifetime keep = prelude.def_map(db); &keep }; def_map[prelude.local_id].scope.get(name) } else { PerNs::none() } } } /// Given a block module, returns its nearest non-block module and the `DefMap` it blongs to. fn adjust_to_nearest_non_block_module( db: &dyn DefDatabase, def_map: &DefMap, mut local_id: LocalModuleId, ) -> (Arc, LocalModuleId) { // INVARIANT: `local_id` in `def_map` must be a block module. stdx::always!(def_map.module_id(local_id).is_block_module()); let mut ext; // This needs to be a local variable due to our mighty lifetime. let mut def_map = def_map; loop { let BlockInfo { parent, .. } = def_map.block.expect("block module without parent module"); ext = parent.def_map(db, def_map.krate); def_map = &ext; local_id = parent.local_id; if !parent.is_block_module() { return (ext, local_id); } } }