use std::iter; use ast::make; use either::Either; use hir::{HirDisplay, Local}; use ide_db::{ defs::{Definition, NameRefClass}, search::{FileReference, ReferenceAccess, SearchScope}, }; use itertools::Itertools; use stdx::format_to; use syntax::{ algo::SyntaxRewriter, ast::{ self, edit::{AstNodeEdit, IndentLevel}, AstNode, }, SyntaxElement, SyntaxKind::{self, BLOCK_EXPR, BREAK_EXPR, COMMENT, PATH_EXPR, RETURN_EXPR}, SyntaxNode, SyntaxToken, TextRange, TextSize, TokenAtOffset, WalkEvent, T, }; use test_utils::mark; use crate::{ assist_context::{AssistContext, Assists}, AssistId, }; // Assist: extract_function // // Extracts selected statements into new function. // // ``` // fn main() { // let n = 1; // $0let m = n + 2; // let k = m + n;$0 // let g = 3; // } // ``` // -> // ``` // fn main() { // let n = 1; // fun_name(n); // let g = 3; // } // // fn $0fun_name(n: i32) { // let m = n + 2; // let k = m + n; // } // ``` pub(crate) fn extract_function(acc: &mut Assists, ctx: &AssistContext) -> Option<()> { if ctx.frange.range.is_empty() { return None; } let node = ctx.covering_element(); if node.kind() == COMMENT { mark::hit!(extract_function_in_comment_is_not_applicable); return None; } let node = element_to_node(node); let body = extraction_target(&node, ctx.frange.range)?; let vars_used_in_body = vars_used_in_body(ctx, &body); let self_param = self_param_from_usages(ctx, &body, &vars_used_in_body); let anchor = if self_param.is_some() { Anchor::Method } else { Anchor::Freestanding }; let insert_after = scope_for_fn_insertion(&body, anchor)?; let module = ctx.sema.scope(&insert_after).module()?; let vars_defined_in_body_and_outlive = vars_defined_in_body_and_outlive(ctx, &body); let ret_ty = body_return_ty(ctx, &body)?; // FIXME: we compute variables that outlive here just to check `never!` condition // this requires traversing whole `body` (cheap) and finding all references (expensive) // maybe we can move this check to `edit` closure somehow? if stdx::never!(!vars_defined_in_body_and_outlive.is_empty() && !ret_ty.is_unit()) { // We should not have variables that outlive body if we have expression block return None; } let control_flow = external_control_flow(ctx, &body)?; let target_range = body.text_range(); acc.add( AssistId("extract_function", crate::AssistKind::RefactorExtract), "Extract into function", target_range, move |builder| { let params = extracted_function_params(ctx, &body, &vars_used_in_body); let fun = Function { name: "fun_name".to_string(), self_param: self_param.map(|(_, pat)| pat), params, control_flow, ret_ty, body, vars_defined_in_body_and_outlive, }; let new_indent = IndentLevel::from_node(&insert_after); let old_indent = fun.body.indent_level(); builder.replace(target_range, format_replacement(ctx, &fun, old_indent)); let fn_def = format_function(ctx, module, &fun, old_indent, new_indent); let insert_offset = insert_after.text_range().end(); builder.insert(insert_offset, fn_def); }, ) } fn external_control_flow(ctx: &AssistContext, body: &FunctionBody) -> Option { let mut ret_expr = None; let mut try_expr = None; let mut break_expr = None; let mut continue_expr = None; let (syntax, text_range) = match body { FunctionBody::Expr(expr) => (expr.syntax(), expr.syntax().text_range()), FunctionBody::Span { parent, text_range } => (parent.syntax(), *text_range), }; let mut nested_loop = None; let mut nested_scope = None; for e in syntax.preorder() { let e = match e { WalkEvent::Enter(e) => e, WalkEvent::Leave(e) => { if nested_loop.as_ref() == Some(&e) { nested_loop = None; } if nested_scope.as_ref() == Some(&e) { nested_scope = None; } continue; } }; if nested_scope.is_some() { continue; } if !text_range.contains_range(e.text_range()) { continue; } match e.kind() { SyntaxKind::LOOP_EXPR | SyntaxKind::WHILE_EXPR | SyntaxKind::FOR_EXPR => { if nested_loop.is_none() { nested_loop = Some(e); } } SyntaxKind::FN | SyntaxKind::CONST | SyntaxKind::STATIC | SyntaxKind::IMPL | SyntaxKind::MODULE => { if nested_scope.is_none() { nested_scope = Some(e); } } SyntaxKind::RETURN_EXPR => { ret_expr = Some(ast::ReturnExpr::cast(e).unwrap()); } SyntaxKind::TRY_EXPR => { try_expr = Some(ast::TryExpr::cast(e).unwrap()); } SyntaxKind::BREAK_EXPR if nested_loop.is_none() => { break_expr = Some(ast::BreakExpr::cast(e).unwrap()); } SyntaxKind::CONTINUE_EXPR if nested_loop.is_none() => { continue_expr = Some(ast::ContinueExpr::cast(e).unwrap()); } _ => {} } } let kind = match (try_expr, ret_expr, break_expr, continue_expr) { (Some(e), None, None, None) => { let func = e.syntax().ancestors().find_map(ast::Fn::cast)?; let def = ctx.sema.to_def(&func)?; let ret_ty = def.ret_type(ctx.db()); let kind = try_kind_of_ty(ret_ty, ctx)?; Some(FlowKind::Try { kind }) } (Some(_), Some(r), None, None) => match r.expr() { Some(expr) => { if let Some(kind) = expr_err_kind(&expr, ctx) { Some(FlowKind::TryReturn { expr, kind }) } else { mark::hit!(external_control_flow_try_and_return_non_err); return None; } } None => return None, }, (Some(_), _, _, _) => { mark::hit!(external_control_flow_try_and_bc); return None; } (None, Some(r), None, None) => match r.expr() { Some(expr) => Some(FlowKind::ReturnValue(expr)), None => Some(FlowKind::Return), }, (None, Some(_), _, _) => { mark::hit!(external_control_flow_return_and_bc); return None; } (None, None, Some(_), Some(_)) => { mark::hit!(external_control_flow_break_and_continue); return None; } (None, None, Some(b), None) => match b.expr() { Some(expr) => Some(FlowKind::BreakValue(expr)), None => Some(FlowKind::Break), }, (None, None, None, Some(_)) => Some(FlowKind::Continue), (None, None, None, None) => None, }; Some(ControlFlow { kind }) } /// Checks is expr is `Err(_)` or `None` fn expr_err_kind(expr: &ast::Expr, ctx: &AssistContext) -> Option { let call_expr = match expr { ast::Expr::CallExpr(call_expr) => call_expr, _ => return None, }; let func = call_expr.expr()?; let text = func.syntax().text(); if text == "Err" { Some(TryKind::Result { ty: ctx.sema.type_of_expr(expr)? }) } else if text == "None" { Some(TryKind::Option) } else { None } } #[derive(Debug)] struct Function { name: String, self_param: Option, params: Vec, control_flow: ControlFlow, ret_ty: RetType, body: FunctionBody, vars_defined_in_body_and_outlive: Vec, } #[derive(Debug)] struct Param { var: Local, ty: hir::Type, has_usages_afterwards: bool, has_mut_inside_body: bool, is_copy: bool, } #[derive(Debug)] struct ControlFlow { kind: Option, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] enum ParamKind { Value, MutValue, SharedRef, MutRef, } #[derive(Debug, Eq, PartialEq)] enum FunType { Unit, Single(hir::Type), Tuple(Vec), } impl Function { fn return_type(&self, ctx: &AssistContext) -> FunType { match &self.ret_ty { RetType::Expr(ty) if ty.is_unit() => FunType::Unit, RetType::Expr(ty) => FunType::Single(ty.clone()), RetType::Stmt => match self.vars_defined_in_body_and_outlive.as_slice() { [] => FunType::Unit, [var] => FunType::Single(var.ty(ctx.db())), vars => { let types = vars.iter().map(|v| v.ty(ctx.db())).collect(); FunType::Tuple(types) } }, } } } impl ParamKind { fn is_ref(&self) -> bool { matches!(self, ParamKind::SharedRef | ParamKind::MutRef) } } impl Param { fn kind(&self) -> ParamKind { match (self.has_usages_afterwards, self.has_mut_inside_body, self.is_copy) { (true, true, _) => ParamKind::MutRef, (true, false, false) => ParamKind::SharedRef, (false, true, _) => ParamKind::MutValue, (true, false, true) | (false, false, _) => ParamKind::Value, } } fn to_arg(&self, ctx: &AssistContext) -> ast::Expr { let var = path_expr_from_local(ctx, self.var); match self.kind() { ParamKind::Value | ParamKind::MutValue => var, ParamKind::SharedRef => make::expr_ref(var, false), ParamKind::MutRef => make::expr_ref(var, true), } } fn to_param(&self, ctx: &AssistContext, module: hir::Module) -> ast::Param { let var = self.var.name(ctx.db()).unwrap().to_string(); let var_name = make::name(&var); let pat = match self.kind() { ParamKind::MutValue => make::ident_mut_pat(var_name), ParamKind::Value | ParamKind::SharedRef | ParamKind::MutRef => { make::ident_pat(var_name) } }; let ty = make_ty(&self.ty, ctx, module); let ty = match self.kind() { ParamKind::Value | ParamKind::MutValue => ty, ParamKind::SharedRef => make::ty_ref(ty, false), ParamKind::MutRef => make::ty_ref(ty, true), }; make::param(pat.into(), ty) } } /// Control flow that is exported from extracted function /// /// E.g.: /// ```rust,no_run /// loop { /// $0 /// if 42 == 42 { /// break; /// } /// $0 /// } /// ``` #[derive(Debug, Clone)] enum FlowKind { /// Return without value (`return;`) Return, /// Return with value (`return $expr;`) ReturnValue(ast::Expr), Try { kind: TryKind, }, TryReturn { expr: ast::Expr, kind: TryKind, }, /// Break without value (`return;`) Break, /// Break with value (`break $expr;`) BreakValue(ast::Expr), /// Continue Continue, } #[derive(Debug, Clone)] enum TryKind { Option, Result { ty: hir::Type }, } impl FlowKind { fn make_result_handler(&self, expr: Option) -> ast::Expr { match self { FlowKind::Return | FlowKind::ReturnValue(_) => make::expr_return(expr), FlowKind::Break | FlowKind::BreakValue(_) => make::expr_break(expr), FlowKind::Try { .. } | FlowKind::TryReturn { .. } => { stdx::never!("cannot have result handler with try"); expr.unwrap_or_else(|| make::expr_return(None)) } FlowKind::Continue => { stdx::always!(expr.is_none(), "continue with value is not possible"); make::expr_continue() } } } fn expr_ty(&self, ctx: &AssistContext) -> Option { match self { FlowKind::ReturnValue(expr) | FlowKind::BreakValue(expr) | FlowKind::TryReturn { expr, .. } => ctx.sema.type_of_expr(expr), FlowKind::Try { .. } => { stdx::never!("try does not have defined expr_ty"); None } FlowKind::Return | FlowKind::Break | FlowKind::Continue => None, } } } fn try_kind_of_ty(ty: hir::Type, ctx: &AssistContext) -> Option { if ty.is_unknown() { // We favour Result for `expr?` return Some(TryKind::Result { ty }); } let adt = ty.as_adt()?; let name = adt.name(ctx.db()); // FIXME: use lang items to determine if it is std type or user defined // E.g. if user happens to define type named `Option`, we would have false positive match name.to_string().as_str() { "Option" => Some(TryKind::Option), "Result" => Some(TryKind::Result { ty }), _ => None, } } #[derive(Debug)] enum RetType { Expr(hir::Type), Stmt, } impl RetType { fn is_unit(&self) -> bool { match self { RetType::Expr(ty) => ty.is_unit(), RetType::Stmt => true, } } } /// Semantically same as `ast::Expr`, but preserves identity when using only part of the Block #[derive(Debug)] enum FunctionBody { Expr(ast::Expr), Span { parent: ast::BlockExpr, text_range: TextRange }, } impl FunctionBody { fn from_whole_node(node: SyntaxNode) -> Option { match node.kind() { PATH_EXPR => None, BREAK_EXPR => ast::BreakExpr::cast(node).and_then(|e| e.expr()).map(Self::Expr), RETURN_EXPR => ast::ReturnExpr::cast(node).and_then(|e| e.expr()).map(Self::Expr), BLOCK_EXPR => ast::BlockExpr::cast(node) .filter(|it| it.is_standalone()) .map(Into::into) .map(Self::Expr), _ => ast::Expr::cast(node).map(Self::Expr), } } fn from_range(node: SyntaxNode, text_range: TextRange) -> Option { let block = ast::BlockExpr::cast(node)?; Some(Self::Span { parent: block, text_range }) } fn indent_level(&self) -> IndentLevel { match &self { FunctionBody::Expr(expr) => IndentLevel::from_node(expr.syntax()), FunctionBody::Span { parent, .. } => IndentLevel::from_node(parent.syntax()) + 1, } } fn tail_expr(&self) -> Option { match &self { FunctionBody::Expr(expr) => Some(expr.clone()), FunctionBody::Span { parent, text_range } => { let tail_expr = parent.tail_expr()?; if text_range.contains_range(tail_expr.syntax().text_range()) { Some(tail_expr) } else { None } } } } fn descendants(&self) -> impl Iterator + '_ { match self { FunctionBody::Expr(expr) => Either::Right(expr.syntax().descendants()), FunctionBody::Span { parent, text_range } => Either::Left( parent .syntax() .descendants() .filter(move |it| text_range.contains_range(it.text_range())), ), } } fn text_range(&self) -> TextRange { match self { FunctionBody::Expr(expr) => expr.syntax().text_range(), FunctionBody::Span { parent: _, text_range } => *text_range, } } fn contains_range(&self, range: TextRange) -> bool { self.text_range().contains_range(range) } fn preceedes_range(&self, range: TextRange) -> bool { self.text_range().end() <= range.start() } fn contains_node(&self, node: &SyntaxNode) -> bool { self.contains_range(node.text_range()) } } impl HasTokenAtOffset for FunctionBody { fn token_at_offset(&self, offset: TextSize) -> TokenAtOffset { match self { FunctionBody::Expr(expr) => expr.syntax().token_at_offset(offset), FunctionBody::Span { parent, text_range } => { match parent.syntax().token_at_offset(offset) { TokenAtOffset::None => TokenAtOffset::None, TokenAtOffset::Single(t) => { if text_range.contains_range(t.text_range()) { TokenAtOffset::Single(t) } else { TokenAtOffset::None } } TokenAtOffset::Between(a, b) => { match ( text_range.contains_range(a.text_range()), text_range.contains_range(b.text_range()), ) { (true, true) => TokenAtOffset::Between(a, b), (true, false) => TokenAtOffset::Single(a), (false, true) => TokenAtOffset::Single(b), (false, false) => TokenAtOffset::None, } } } } } } } /// node or token's parent fn element_to_node(node: SyntaxElement) -> SyntaxNode { match node { syntax::NodeOrToken::Node(n) => n, syntax::NodeOrToken::Token(t) => t.parent(), } } /// Try to guess what user wants to extract /// /// We have basically have two cases: /// * We want whole node, like `loop {}`, `2 + 2`, `{ let n = 1; }` exprs. /// Then we can use `ast::Expr` /// * We want a few statements for a block. E.g. /// ```rust,no_run /// fn foo() -> i32 { /// let m = 1; /// $0 /// let n = 2; /// let k = 3; /// k + n /// $0 /// } /// ``` /// fn extraction_target(node: &SyntaxNode, selection_range: TextRange) -> Option { // we have selected exactly the expr node // wrap it before anything else if node.text_range() == selection_range { let body = FunctionBody::from_whole_node(node.clone()); if body.is_some() { return body; } } // we have selected a few statements in a block // so covering_element returns the whole block if node.kind() == BLOCK_EXPR { let body = FunctionBody::from_range(node.clone(), selection_range); if body.is_some() { return body; } } // we have selected single statement // `from_whole_node` failed because (let) statement is not and expression // so we try to expand covering_element to parent and repeat the previous if let Some(parent) = node.parent() { if parent.kind() == BLOCK_EXPR { let body = FunctionBody::from_range(parent, selection_range); if body.is_some() { return body; } } } // select the closest containing expr (both ifs are used) std::iter::once(node.clone()).chain(node.ancestors()).find_map(FunctionBody::from_whole_node) } /// list local variables that are referenced in `body` fn vars_used_in_body(ctx: &AssistContext, body: &FunctionBody) -> Vec { // FIXME: currently usages inside macros are not found body.descendants() .filter_map(ast::NameRef::cast) .filter_map(|name_ref| NameRefClass::classify(&ctx.sema, &name_ref)) .map(|name_kind| name_kind.referenced(ctx.db())) .filter_map(|definition| match definition { Definition::Local(local) => Some(local), _ => None, }) .unique() .collect() } /// find `self` param, that was not defined inside `body` /// /// It should skip `self` params from impls inside `body` fn self_param_from_usages( ctx: &AssistContext, body: &FunctionBody, vars_used_in_body: &[Local], ) -> Option<(Local, ast::SelfParam)> { let mut iter = vars_used_in_body .iter() .filter(|var| var.is_self(ctx.db())) .map(|var| (var, var.source(ctx.db()))) .filter(|(_, src)| is_defined_before(ctx, body, src)) .filter_map(|(&node, src)| match src.value { Either::Right(it) => Some((node, it)), Either::Left(_) => { stdx::never!(false, "Local::is_self returned true, but source is IdentPat"); None } }); let self_param = iter.next(); stdx::always!( iter.next().is_none(), "body references two different self params, both defined outside" ); self_param } /// find variables that should be extracted as params /// /// Computes additional info that affects param type and mutability fn extracted_function_params( ctx: &AssistContext, body: &FunctionBody, vars_used_in_body: &[Local], ) -> Vec { vars_used_in_body .iter() .filter(|var| !var.is_self(ctx.db())) .map(|node| (node, node.source(ctx.db()))) .filter(|(_, src)| is_defined_before(ctx, body, src)) .filter_map(|(&node, src)| { if src.value.is_left() { Some(node) } else { stdx::never!(false, "Local::is_self returned false, but source is SelfParam"); None } }) .map(|var| { let usages = LocalUsages::find(ctx, var); let ty = var.ty(ctx.db()); let is_copy = ty.is_copy(ctx.db()); Param { var, ty, has_usages_afterwards: has_usages_after_body(&usages, body), has_mut_inside_body: has_exclusive_usages(ctx, &usages, body), is_copy, } }) .collect() } fn has_usages_after_body(usages: &LocalUsages, body: &FunctionBody) -> bool { usages.iter().any(|reference| body.preceedes_range(reference.range)) } /// checks if relevant var is used with `&mut` access inside body fn has_exclusive_usages(ctx: &AssistContext, usages: &LocalUsages, body: &FunctionBody) -> bool { usages .iter() .filter(|reference| body.contains_range(reference.range)) .any(|reference| reference_is_exclusive(reference, body, ctx)) } /// checks if this reference requires `&mut` access inside body fn reference_is_exclusive( reference: &FileReference, body: &FunctionBody, ctx: &AssistContext, ) -> bool { // we directly modify variable with set: `n = 0`, `n += 1` if reference.access == Some(ReferenceAccess::Write) { return true; } // we take `&mut` reference to variable: `&mut v` let path = match path_element_of_reference(body, reference) { Some(path) => path, None => return false, }; expr_require_exclusive_access(ctx, &path).unwrap_or(false) } /// checks if this expr requires `&mut` access, recurses on field access fn expr_require_exclusive_access(ctx: &AssistContext, expr: &ast::Expr) -> Option { let parent = expr.syntax().parent()?; if let Some(bin_expr) = ast::BinExpr::cast(parent.clone()) { if bin_expr.op_kind()?.is_assignment() { return Some(bin_expr.lhs()?.syntax() == expr.syntax()); } return Some(false); } if let Some(ref_expr) = ast::RefExpr::cast(parent.clone()) { return Some(ref_expr.mut_token().is_some()); } if let Some(method_call) = ast::MethodCallExpr::cast(parent.clone()) { let func = ctx.sema.resolve_method_call(&method_call)?; let self_param = func.self_param(ctx.db())?; let access = self_param.access(ctx.db()); return Some(matches!(access, hir::Access::Exclusive)); } if let Some(field) = ast::FieldExpr::cast(parent) { return expr_require_exclusive_access(ctx, &field.into()); } Some(false) } /// Container of local varaible usages /// /// Semanticall same as `UsageSearchResult`, but provides more convenient interface struct LocalUsages(ide_db::search::UsageSearchResult); impl LocalUsages { fn find(ctx: &AssistContext, var: Local) -> Self { Self( Definition::Local(var) .usages(&ctx.sema) .in_scope(SearchScope::single_file(ctx.frange.file_id)) .all(), ) } fn iter(&self) -> impl Iterator + '_ { self.0.iter().flat_map(|(_, rs)| rs.iter()) } } trait HasTokenAtOffset { fn token_at_offset(&self, offset: TextSize) -> TokenAtOffset; } impl HasTokenAtOffset for SyntaxNode { fn token_at_offset(&self, offset: TextSize) -> TokenAtOffset { SyntaxNode::token_at_offset(&self, offset) } } /// find relevant `ast::PathExpr` for reference /// /// # Preconditions /// /// `node` must cover `reference`, that is `node.text_range().contains_range(reference.range)` fn path_element_of_reference( node: &dyn HasTokenAtOffset, reference: &FileReference, ) -> Option { let token = node.token_at_offset(reference.range.start()).right_biased().or_else(|| { stdx::never!(false, "cannot find token at variable usage: {:?}", reference); None })?; let path = token.ancestors().find_map(ast::Expr::cast).or_else(|| { stdx::never!(false, "cannot find path parent of variable usage: {:?}", token); None })?; stdx::always!(matches!(path, ast::Expr::PathExpr(_))); Some(path) } /// list local variables defined inside `body` fn vars_defined_in_body(body: &FunctionBody, ctx: &AssistContext) -> Vec { // FIXME: this doesn't work well with macros // see https://github.com/rust-analyzer/rust-analyzer/pull/7535#discussion_r570048550 body.descendants() .filter_map(ast::IdentPat::cast) .filter_map(|let_stmt| ctx.sema.to_def(&let_stmt)) .unique() .collect() } /// list local variables defined inside `body` that should be returned from extracted function fn vars_defined_in_body_and_outlive(ctx: &AssistContext, body: &FunctionBody) -> Vec { let mut vars_defined_in_body = vars_defined_in_body(&body, ctx); vars_defined_in_body.retain(|var| var_outlives_body(ctx, body, var)); vars_defined_in_body } /// checks if the relevant local was defined before(outside of) body fn is_defined_before( ctx: &AssistContext, body: &FunctionBody, src: &hir::InFile>, ) -> bool { src.file_id.original_file(ctx.db()) == ctx.frange.file_id && !body.contains_node(&either_syntax(&src.value)) } fn either_syntax(value: &Either) -> &SyntaxNode { match value { Either::Left(pat) => pat.syntax(), Either::Right(it) => it.syntax(), } } /// checks if local variable is used after(outside of) body fn var_outlives_body(ctx: &AssistContext, body: &FunctionBody, var: &Local) -> bool { let usages = LocalUsages::find(ctx, *var); let has_usages = usages.iter().any(|reference| body.preceedes_range(reference.range)); has_usages } fn body_return_ty(ctx: &AssistContext, body: &FunctionBody) -> Option { match body.tail_expr() { Some(expr) => { let ty = ctx.sema.type_of_expr(&expr)?; Some(RetType::Expr(ty)) } None => Some(RetType::Stmt), } } /// Where to put extracted function definition #[derive(Debug)] enum Anchor { /// Extract free function and put right after current top-level function Freestanding, /// Extract method and put right after current function in the impl-block Method, } /// find where to put extracted function definition /// /// Function should be put right after returned node fn scope_for_fn_insertion(body: &FunctionBody, anchor: Anchor) -> Option { match body { FunctionBody::Expr(e) => scope_for_fn_insertion_node(e.syntax(), anchor), FunctionBody::Span { parent, .. } => scope_for_fn_insertion_node(parent.syntax(), anchor), } } fn scope_for_fn_insertion_node(node: &SyntaxNode, anchor: Anchor) -> Option { let mut ancestors = node.ancestors().peekable(); let mut last_ancestor = None; while let Some(next_ancestor) = ancestors.next() { match next_ancestor.kind() { SyntaxKind::SOURCE_FILE => break, SyntaxKind::ITEM_LIST => { if !matches!(anchor, Anchor::Freestanding) { continue; } if ancestors.peek().map(SyntaxNode::kind) == Some(SyntaxKind::MODULE) { break; } } SyntaxKind::ASSOC_ITEM_LIST => { if !matches!(anchor, Anchor::Method) { continue; } if ancestors.peek().map(SyntaxNode::kind) == Some(SyntaxKind::IMPL) { break; } } _ => {} } last_ancestor = Some(next_ancestor); } last_ancestor } fn format_replacement(ctx: &AssistContext, fun: &Function, indent: IndentLevel) -> String { let ret_ty = fun.return_type(ctx); let args = fun.params.iter().map(|param| param.to_arg(ctx)); let args = make::arg_list(args); let call_expr = if fun.self_param.is_some() { let self_arg = make::expr_path(make_path_from_text("self")); make::expr_method_call(self_arg, &fun.name, args) } else { let func = make::expr_path(make_path_from_text(&fun.name)); make::expr_call(func, args) }; let handler = FlowHandler::from_ret_ty(fun, &ret_ty); let expr = handler.make_call_expr(call_expr).indent(indent); let mut buf = String::new(); match fun.vars_defined_in_body_and_outlive.as_slice() { [] => {} [var] => format_to!(buf, "let {} = ", var.name(ctx.db()).unwrap()), [v0, vs @ ..] => { buf.push_str("let ("); format_to!(buf, "{}", v0.name(ctx.db()).unwrap()); for var in vs { format_to!(buf, ", {}", var.name(ctx.db()).unwrap()); } buf.push_str(") = "); } } format_to!(buf, "{}", expr); if fun.ret_ty.is_unit() && (!fun.vars_defined_in_body_and_outlive.is_empty() || !expr.is_block_like()) { buf.push(';'); } buf } enum FlowHandler { None, Try { kind: TryKind }, If { action: FlowKind }, IfOption { action: FlowKind }, MatchOption { none: FlowKind }, MatchResult { err: FlowKind }, } impl FlowHandler { fn from_ret_ty(fun: &Function, ret_ty: &FunType) -> FlowHandler { match &fun.control_flow.kind { None => FlowHandler::None, Some(flow_kind) => { let action = flow_kind.clone(); if *ret_ty == FunType::Unit { match flow_kind { FlowKind::Return | FlowKind::Break | FlowKind::Continue => { FlowHandler::If { action } } FlowKind::ReturnValue(_) | FlowKind::BreakValue(_) => { FlowHandler::IfOption { action } } FlowKind::Try { kind } | FlowKind::TryReturn { kind, .. } => { FlowHandler::Try { kind: kind.clone() } } } } else { match flow_kind { FlowKind::Return | FlowKind::Break | FlowKind::Continue => { FlowHandler::MatchOption { none: action } } FlowKind::ReturnValue(_) | FlowKind::BreakValue(_) => { FlowHandler::MatchResult { err: action } } FlowKind::Try { kind } | FlowKind::TryReturn { kind, .. } => { FlowHandler::Try { kind: kind.clone() } } } } } } } fn make_call_expr(&self, call_expr: ast::Expr) -> ast::Expr { match self { FlowHandler::None => call_expr, FlowHandler::Try { kind: _ } => make::expr_try(call_expr), FlowHandler::If { action } => { let action = action.make_result_handler(None); let stmt = make::expr_stmt(action); let block = make::block_expr(iter::once(stmt.into()), None); let condition = make::condition(call_expr, None); make::expr_if(condition, block, None) } FlowHandler::IfOption { action } => { let path = make_path_from_text("Some"); let value_pat = make::ident_pat(make::name("value")); let pattern = make::tuple_struct_pat(path, iter::once(value_pat.into())); let cond = make::condition(call_expr, Some(pattern.into())); let value = make::expr_path(make_path_from_text("value")); let action_expr = action.make_result_handler(Some(value)); let action_stmt = make::expr_stmt(action_expr); let then = make::block_expr(iter::once(action_stmt.into()), None); make::expr_if(cond, then, None) } FlowHandler::MatchOption { none } => { let some_name = "value"; let some_arm = { let path = make_path_from_text("Some"); let value_pat = make::ident_pat(make::name(some_name)); let pat = make::tuple_struct_pat(path, iter::once(value_pat.into())); let value = make::expr_path(make_path_from_text(some_name)); make::match_arm(iter::once(pat.into()), value) }; let none_arm = { let path = make_path_from_text("None"); let pat = make::path_pat(path); make::match_arm(iter::once(pat), none.make_result_handler(None)) }; let arms = make::match_arm_list(vec![some_arm, none_arm]); make::expr_match(call_expr, arms) } FlowHandler::MatchResult { err } => { let ok_name = "value"; let err_name = "value"; let ok_arm = { let path = make_path_from_text("Ok"); let value_pat = make::ident_pat(make::name(ok_name)); let pat = make::tuple_struct_pat(path, iter::once(value_pat.into())); let value = make::expr_path(make_path_from_text(ok_name)); make::match_arm(iter::once(pat.into()), value) }; let err_arm = { let path = make_path_from_text("Err"); let value_pat = make::ident_pat(make::name(err_name)); let pat = make::tuple_struct_pat(path, iter::once(value_pat.into())); let value = make::expr_path(make_path_from_text(err_name)); make::match_arm(iter::once(pat.into()), err.make_result_handler(Some(value))) }; let arms = make::match_arm_list(vec![ok_arm, err_arm]); make::expr_match(call_expr, arms) } } } } fn make_path_from_text(text: &str) -> ast::Path { make::path_unqualified(make::path_segment(make::name_ref(text))) } fn path_expr_from_local(ctx: &AssistContext, var: Local) -> ast::Expr { let name = var.name(ctx.db()).unwrap().to_string(); make::expr_path(make_path_from_text(&name)) } fn format_function( ctx: &AssistContext, module: hir::Module, fun: &Function, old_indent: IndentLevel, new_indent: IndentLevel, ) -> String { let mut fn_def = String::new(); let params = make_param_list(ctx, module, fun); let ret_ty = make_ret_ty(ctx, module, fun); let body = make_body(ctx, old_indent, new_indent, fun); format_to!(fn_def, "\n\n{}fn $0{}{}", new_indent, fun.name, params); if let Some(ret_ty) = ret_ty { format_to!(fn_def, " {}", ret_ty); } format_to!(fn_def, " {}", body); fn_def } fn make_param_list(ctx: &AssistContext, module: hir::Module, fun: &Function) -> ast::ParamList { let self_param = fun.self_param.clone(); let params = fun.params.iter().map(|param| param.to_param(ctx, module)); make::param_list(self_param, params) } impl FunType { fn make_ty(&self, ctx: &AssistContext, module: hir::Module) -> ast::Type { match self { FunType::Unit => make::ty_unit(), FunType::Single(ty) => make_ty(ty, ctx, module), FunType::Tuple(types) => match types.as_slice() { [] => { stdx::never!("tuple type with 0 elements"); make::ty_unit() } [ty] => { stdx::never!("tuple type with 1 element"); make_ty(ty, ctx, module) } types => { let types = types.iter().map(|ty| make_ty(ty, ctx, module)); make::ty_tuple(types) } }, } } } fn make_ret_ty(ctx: &AssistContext, module: hir::Module, fun: &Function) -> Option { let fun_ty = fun.return_type(ctx); let handler = FlowHandler::from_ret_ty(fun, &fun_ty); let ret_ty = match &handler { FlowHandler::None => { if matches!(fun_ty, FunType::Unit) { return None; } fun_ty.make_ty(ctx, module) } FlowHandler::Try { kind: TryKind::Option } => { make::ty_generic(make::name_ref("Option"), iter::once(fun_ty.make_ty(ctx, module))) } FlowHandler::Try { kind: TryKind::Result { ty: parent_ret_ty } } => { let handler_ty = result_err_ty(parent_ret_ty, ctx, module).unwrap_or_else(make::ty_unit); make::ty_generic( make::name_ref("Result"), vec![fun_ty.make_ty(ctx, module), handler_ty], ) } FlowHandler::If { .. } => make::ty("bool"), FlowHandler::IfOption { action } => { let handler_ty = action .expr_ty(ctx) .map(|ty| make_ty(&ty, ctx, module)) .unwrap_or_else(make::ty_unit); make::ty_generic(make::name_ref("Option"), iter::once(handler_ty)) } FlowHandler::MatchOption { .. } => { make::ty_generic(make::name_ref("Option"), iter::once(fun_ty.make_ty(ctx, module))) } FlowHandler::MatchResult { err } => { let handler_ty = err.expr_ty(ctx).map(|ty| make_ty(&ty, ctx, module)).unwrap_or_else(make::ty_unit); make::ty_generic( make::name_ref("Result"), vec![fun_ty.make_ty(ctx, module), handler_ty], ) } }; Some(make::ret_type(ret_ty)) } /// Extract `E` type from `Result` fn result_err_ty( parent_ret_ty: &hir::Type, ctx: &AssistContext, module: hir::Module, ) -> Option { // FIXME: use hir to extract argument information // currently we use `format -> take part -> parse` let path_ty = match make_ty(&parent_ret_ty, ctx, module) { ast::Type::PathType(path_ty) => path_ty, _ => return None, }; let arg_list = path_ty.path()?.segment()?.generic_arg_list()?; let err_arg = arg_list.generic_args().nth(1)?; let type_arg = match err_arg { ast::GenericArg::TypeArg(type_arg) => type_arg, _ => return None, }; type_arg.ty() } fn make_body( ctx: &AssistContext, old_indent: IndentLevel, new_indent: IndentLevel, fun: &Function, ) -> ast::BlockExpr { let ret_ty = fun.return_type(ctx); let handler = FlowHandler::from_ret_ty(fun, &ret_ty); let block = match &fun.body { FunctionBody::Expr(expr) => { let expr = rewrite_body_segment(ctx, &fun.params, &handler, expr.syntax()); let expr = ast::Expr::cast(expr).unwrap(); let expr = expr.dedent(old_indent).indent(IndentLevel(1)); make::block_expr(Vec::new(), Some(expr)) } FunctionBody::Span { parent, text_range } => { let mut elements: Vec<_> = parent .syntax() .children() .filter(|it| text_range.contains_range(it.text_range())) .map(|it| rewrite_body_segment(ctx, &fun.params, &handler, &it)) .collect(); let mut tail_expr = match elements.pop() { Some(node) => ast::Expr::cast(node.clone()).or_else(|| { elements.push(node); None }), None => None, }; if tail_expr.is_none() { match fun.vars_defined_in_body_and_outlive.as_slice() { [] => {} [var] => { tail_expr = Some(path_expr_from_local(ctx, *var)); } vars => { let exprs = vars.iter().map(|var| path_expr_from_local(ctx, *var)); let expr = make::expr_tuple(exprs); tail_expr = Some(expr); } } } let elements = elements.into_iter().filter_map(|node| match ast::Stmt::cast(node) { Some(stmt) => Some(stmt), None => { stdx::never!("block contains non-statement"); None } }); let body_indent = IndentLevel(1); let elements = elements.map(|stmt| stmt.dedent(old_indent).indent(body_indent)); let tail_expr = tail_expr.map(|expr| expr.dedent(old_indent).indent(body_indent)); make::block_expr(elements, tail_expr) } }; let block = match &handler { FlowHandler::None => block, FlowHandler::Try { kind } => { let block = with_default_tail_expr(block, make::expr_unit()); map_tail_expr(block, |tail_expr| { let constructor = match kind { TryKind::Option => "Some", TryKind::Result { .. } => "Ok", }; let func = make::expr_path(make_path_from_text(constructor)); let args = make::arg_list(iter::once(tail_expr)); make::expr_call(func, args) }) } FlowHandler::If { .. } => { let lit_false = ast::Literal::cast(make::tokens::literal("false").parent()).unwrap(); with_tail_expr(block, lit_false.into()) } FlowHandler::IfOption { .. } => { let none = make::expr_path(make_path_from_text("None")); with_tail_expr(block, none) } FlowHandler::MatchOption { .. } => map_tail_expr(block, |tail_expr| { let some = make::expr_path(make_path_from_text("Some")); let args = make::arg_list(iter::once(tail_expr)); make::expr_call(some, args) }), FlowHandler::MatchResult { .. } => map_tail_expr(block, |tail_expr| { let ok = make::expr_path(make_path_from_text("Ok")); let args = make::arg_list(iter::once(tail_expr)); make::expr_call(ok, args) }), }; block.indent(new_indent) } fn map_tail_expr(block: ast::BlockExpr, f: impl FnOnce(ast::Expr) -> ast::Expr) -> ast::BlockExpr { let tail_expr = match block.tail_expr() { Some(tail_expr) => tail_expr, None => return block, }; make::block_expr(block.statements(), Some(f(tail_expr))) } fn with_default_tail_expr(block: ast::BlockExpr, tail_expr: ast::Expr) -> ast::BlockExpr { match block.tail_expr() { Some(_) => block, None => make::block_expr(block.statements(), Some(tail_expr)), } } fn with_tail_expr(block: ast::BlockExpr, tail_expr: ast::Expr) -> ast::BlockExpr { let stmt_tail = block.tail_expr().map(|expr| make::expr_stmt(expr).into()); let stmts = block.statements().chain(stmt_tail); make::block_expr(stmts, Some(tail_expr)) } fn format_type(ty: &hir::Type, ctx: &AssistContext, module: hir::Module) -> String { ty.display_source_code(ctx.db(), module.into()).ok().unwrap_or_else(|| "()".to_string()) } fn make_ty(ty: &hir::Type, ctx: &AssistContext, module: hir::Module) -> ast::Type { let ty_str = format_type(ty, ctx, module); make::ty(&ty_str) } fn rewrite_body_segment( ctx: &AssistContext, params: &[Param], handler: &FlowHandler, syntax: &SyntaxNode, ) -> SyntaxNode { let syntax = fix_param_usages(ctx, params, syntax); update_external_control_flow(handler, &syntax) } /// change all usages to account for added `&`/`&mut` for some params fn fix_param_usages(ctx: &AssistContext, params: &[Param], syntax: &SyntaxNode) -> SyntaxNode { let mut rewriter = SyntaxRewriter::default(); for param in params { if !param.kind().is_ref() { continue; } let usages = LocalUsages::find(ctx, param.var); let usages = usages .iter() .filter(|reference| syntax.text_range().contains_range(reference.range)) .filter_map(|reference| path_element_of_reference(syntax, reference)); for path in usages { match path.syntax().ancestors().skip(1).find_map(ast::Expr::cast) { Some(ast::Expr::MethodCallExpr(_)) | Some(ast::Expr::FieldExpr(_)) => { // do nothing } Some(ast::Expr::RefExpr(node)) if param.kind() == ParamKind::MutRef && node.mut_token().is_some() => { rewriter.replace_ast(&node.clone().into(), &node.expr().unwrap()); } Some(ast::Expr::RefExpr(node)) if param.kind() == ParamKind::SharedRef && node.mut_token().is_none() => { rewriter.replace_ast(&node.clone().into(), &node.expr().unwrap()); } Some(_) | None => { rewriter.replace_ast(&path, &make::expr_prefix(T![*], path.clone())); } }; } } rewriter.rewrite(syntax) } fn update_external_control_flow(handler: &FlowHandler, syntax: &SyntaxNode) -> SyntaxNode { let mut rewriter = SyntaxRewriter::default(); let mut nested_loop = None; let mut nested_scope = None; for event in syntax.preorder() { let node = match event { WalkEvent::Enter(e) => { match e.kind() { SyntaxKind::LOOP_EXPR | SyntaxKind::WHILE_EXPR | SyntaxKind::FOR_EXPR => { if nested_loop.is_none() { nested_loop = Some(e.clone()); } } SyntaxKind::FN | SyntaxKind::CONST | SyntaxKind::STATIC | SyntaxKind::IMPL | SyntaxKind::MODULE => { if nested_scope.is_none() { nested_scope = Some(e.clone()); } } _ => {} } e } WalkEvent::Leave(e) => { if nested_loop.as_ref() == Some(&e) { nested_loop = None; } if nested_scope.as_ref() == Some(&e) { nested_scope = None; } continue; } }; if nested_scope.is_some() { continue; } let expr = match ast::Expr::cast(node) { Some(e) => e, None => continue, }; match expr { ast::Expr::ReturnExpr(return_expr) if nested_scope.is_none() => { let expr = return_expr.expr(); if let Some(replacement) = make_rewritten_flow(handler, expr) { rewriter.replace_ast(&return_expr.into(), &replacement); } } ast::Expr::BreakExpr(break_expr) if nested_loop.is_none() => { let expr = break_expr.expr(); if let Some(replacement) = make_rewritten_flow(handler, expr) { rewriter.replace_ast(&break_expr.into(), &replacement); } } ast::Expr::ContinueExpr(continue_expr) if nested_loop.is_none() => { if let Some(replacement) = make_rewritten_flow(handler, None) { rewriter.replace_ast(&continue_expr.into(), &replacement); } } _ => { // do nothing } } } rewriter.rewrite(syntax) } fn make_rewritten_flow(handler: &FlowHandler, arg_expr: Option) -> Option { let value = match handler { FlowHandler::None | FlowHandler::Try { .. } => return None, FlowHandler::If { .. } => { ast::Literal::cast(make::tokens::literal("true").parent()).unwrap().into() } FlowHandler::IfOption { .. } => { let expr = arg_expr.unwrap_or_else(|| make::expr_tuple(Vec::new())); let args = make::arg_list(iter::once(expr)); make::expr_call(make::expr_path(make_path_from_text("Some")), args) } FlowHandler::MatchOption { .. } => make::expr_path(make_path_from_text("None")), FlowHandler::MatchResult { .. } => { let expr = arg_expr.unwrap_or_else(|| make::expr_tuple(Vec::new())); let args = make::arg_list(iter::once(expr)); make::expr_call(make::expr_path(make_path_from_text("Err")), args) } }; Some(make::expr_return(Some(value))) } #[cfg(test)] mod tests { use crate::tests::{check_assist, check_assist_not_applicable}; use super::*; #[test] fn no_args_from_binary_expr() { check_assist( extract_function, r#" fn foo() { foo($01 + 1$0); }"#, r#" fn foo() { foo(fun_name()); } fn $0fun_name() -> i32 { 1 + 1 }"#, ); } #[test] fn no_args_from_binary_expr_in_module() { check_assist( extract_function, r#" mod bar { fn foo() { foo($01 + 1$0); } }"#, r#" mod bar { fn foo() { foo(fun_name()); } fn $0fun_name() -> i32 { 1 + 1 } }"#, ); } #[test] fn no_args_from_binary_expr_indented() { check_assist( extract_function, r#" fn foo() { $0{ 1 + 1 }$0; }"#, r#" fn foo() { fun_name(); } fn $0fun_name() -> i32 { { 1 + 1 } }"#, ); } #[test] fn no_args_from_stmt_with_last_expr() { check_assist( extract_function, r#" fn foo() -> i32 { let k = 1; $0let m = 1; m + 1$0 }"#, r#" fn foo() -> i32 { let k = 1; fun_name() } fn $0fun_name() -> i32 { let m = 1; m + 1 }"#, ); } #[test] fn no_args_from_stmt_unit() { check_assist( extract_function, r#" fn foo() { let k = 3; $0let m = 1; let n = m + 1;$0 let g = 5; }"#, r#" fn foo() { let k = 3; fun_name(); let g = 5; } fn $0fun_name() { let m = 1; let n = m + 1; }"#, ); } #[test] fn no_args_if() { check_assist( extract_function, r#" fn foo() { $0if true { }$0 }"#, r#" fn foo() { fun_name(); } fn $0fun_name() { if true { } }"#, ); } #[test] fn no_args_if_else() { check_assist( extract_function, r#" fn foo() -> i32 { $0if true { 1 } else { 2 }$0 }"#, r#" fn foo() -> i32 { fun_name() } fn $0fun_name() -> i32 { if true { 1 } else { 2 } }"#, ); } #[test] fn no_args_if_let_else() { check_assist( extract_function, r#" fn foo() -> i32 { $0if let true = false { 1 } else { 2 }$0 }"#, r#" fn foo() -> i32 { fun_name() } fn $0fun_name() -> i32 { if let true = false { 1 } else { 2 } }"#, ); } #[test] fn no_args_match() { check_assist( extract_function, r#" fn foo() -> i32 { $0match true { true => 1, false => 2, }$0 }"#, r#" fn foo() -> i32 { fun_name() } fn $0fun_name() -> i32 { match true { true => 1, false => 2, } }"#, ); } #[test] fn no_args_while() { check_assist( extract_function, r#" fn foo() { $0while true { }$0 }"#, r#" fn foo() { fun_name(); } fn $0fun_name() { while true { } }"#, ); } #[test] fn no_args_for() { check_assist( extract_function, r#" fn foo() { $0for v in &[0, 1] { }$0 }"#, r#" fn foo() { fun_name(); } fn $0fun_name() { for v in &[0, 1] { } }"#, ); } #[test] fn no_args_from_loop_unit() { check_assist( extract_function, r#" fn foo() { $0loop { let m = 1; }$0 }"#, r#" fn foo() { fun_name() } fn $0fun_name() -> ! { loop { let m = 1; } }"#, ); } #[test] fn no_args_from_loop_with_return() { check_assist( extract_function, r#" fn foo() { let v = $0loop { let m = 1; break m; }$0; }"#, r#" fn foo() { let v = fun_name(); } fn $0fun_name() -> i32 { loop { let m = 1; break m; } }"#, ); } #[test] fn no_args_from_match() { check_assist( extract_function, r#" fn foo() { let v: i32 = $0match Some(1) { Some(x) => x, None => 0, }$0; }"#, r#" fn foo() { let v: i32 = fun_name(); } fn $0fun_name() -> i32 { match Some(1) { Some(x) => x, None => 0, } }"#, ); } #[test] fn argument_form_expr() { check_assist( extract_function, r" fn foo() -> u32 { let n = 2; $0n+2$0 }", r" fn foo() -> u32 { let n = 2; fun_name(n) } fn $0fun_name(n: u32) -> u32 { n+2 }", ) } #[test] fn argument_used_twice_form_expr() { check_assist( extract_function, r" fn foo() -> u32 { let n = 2; $0n+n$0 }", r" fn foo() -> u32 { let n = 2; fun_name(n) } fn $0fun_name(n: u32) -> u32 { n+n }", ) } #[test] fn two_arguments_form_expr() { check_assist( extract_function, r" fn foo() -> u32 { let n = 2; let m = 3; $0n+n*m$0 }", r" fn foo() -> u32 { let n = 2; let m = 3; fun_name(n, m) } fn $0fun_name(n: u32, m: u32) -> u32 { n+n*m }", ) } #[test] fn argument_and_locals() { check_assist( extract_function, r" fn foo() -> u32 { let n = 2; $0let m = 1; n + m$0 }", r" fn foo() -> u32 { let n = 2; fun_name(n) } fn $0fun_name(n: u32) -> u32 { let m = 1; n + m }", ) } #[test] fn in_comment_is_not_applicable() { mark::check!(extract_function_in_comment_is_not_applicable); check_assist_not_applicable(extract_function, r"fn main() { 1 + /* $0comment$0 */ 1; }"); } #[test] fn part_of_expr_stmt() { check_assist( extract_function, " fn foo() { $01$0 + 1; }", " fn foo() { fun_name() + 1; } fn $0fun_name() -> i32 { 1 }", ); } #[test] fn function_expr() { check_assist( extract_function, r#" fn foo() { $0bar(1 + 1)$0 }"#, r#" fn foo() { fun_name(); } fn $0fun_name() { bar(1 + 1) }"#, ) } #[test] fn extract_from_nested() { check_assist( extract_function, r" fn main() { let x = true; let tuple = match x { true => ($02 + 2$0, true) _ => (0, false) }; }", r" fn main() { let x = true; let tuple = match x { true => (fun_name(), true) _ => (0, false) }; } fn $0fun_name() -> i32 { 2 + 2 }", ); } #[test] fn param_from_closure() { check_assist( extract_function, r" fn main() { let lambda = |x: u32| $0x * 2$0; }", r" fn main() { let lambda = |x: u32| fun_name(x); } fn $0fun_name(x: u32) -> u32 { x * 2 }", ); } #[test] fn extract_return_stmt() { check_assist( extract_function, r" fn foo() -> u32 { $0return 2 + 2$0; }", r" fn foo() -> u32 { return fun_name(); } fn $0fun_name() -> u32 { 2 + 2 }", ); } #[test] fn does_not_add_extra_whitespace() { check_assist( extract_function, r" fn foo() -> u32 { $0return 2 + 2$0; }", r" fn foo() -> u32 { return fun_name(); } fn $0fun_name() -> u32 { 2 + 2 }", ); } #[test] fn break_stmt() { check_assist( extract_function, r" fn main() { let result = loop { $0break 2 + 2$0; }; }", r" fn main() { let result = loop { break fun_name(); }; } fn $0fun_name() -> i32 { 2 + 2 }", ); } #[test] fn extract_cast() { check_assist( extract_function, r" fn main() { let v = $00f32 as u32$0; }", r" fn main() { let v = fun_name(); } fn $0fun_name() -> u32 { 0f32 as u32 }", ); } #[test] fn return_not_applicable() { check_assist_not_applicable(extract_function, r"fn foo() { $0return$0; } "); } #[test] fn method_to_freestanding() { check_assist( extract_function, r" struct S; impl S { fn foo(&self) -> i32 { $01+1$0 } }", r" struct S; impl S { fn foo(&self) -> i32 { fun_name() } } fn $0fun_name() -> i32 { 1+1 }", ); } #[test] fn method_with_reference() { check_assist( extract_function, r" struct S { f: i32 }; impl S { fn foo(&self) -> i32 { $01+self.f$0 } }", r" struct S { f: i32 }; impl S { fn foo(&self) -> i32 { self.fun_name() } fn $0fun_name(&self) -> i32 { 1+self.f } }", ); } #[test] fn method_with_mut() { check_assist( extract_function, r" struct S { f: i32 }; impl S { fn foo(&mut self) { $0self.f += 1;$0 } }", r" struct S { f: i32 }; impl S { fn foo(&mut self) { self.fun_name(); } fn $0fun_name(&mut self) { self.f += 1; } }", ); } #[test] fn variable_defined_inside_and_used_after_no_ret() { check_assist( extract_function, r" fn foo() { let n = 1; $0let k = n * n;$0 let m = k + 1; }", r" fn foo() { let n = 1; let k = fun_name(n); let m = k + 1; } fn $0fun_name(n: i32) -> i32 { let k = n * n; k }", ); } #[test] fn two_variables_defined_inside_and_used_after_no_ret() { check_assist( extract_function, r" fn foo() { let n = 1; $0let k = n * n; let m = k + 2;$0 let h = k + m; }", r" fn foo() { let n = 1; let (k, m) = fun_name(n); let h = k + m; } fn $0fun_name(n: i32) -> (i32, i32) { let k = n * n; let m = k + 2; (k, m) }", ); } #[test] fn nontrivial_patterns_define_variables() { check_assist( extract_function, r" struct Counter(i32); fn foo() { $0let Counter(n) = Counter(0);$0 let m = n; }", r" struct Counter(i32); fn foo() { let n = fun_name(); let m = n; } fn $0fun_name() -> i32 { let Counter(n) = Counter(0); n }", ); } #[test] fn struct_with_two_fields_pattern_define_variables() { check_assist( extract_function, r" struct Counter { n: i32, m: i32 }; fn foo() { $0let Counter { n, m: k } = Counter { n: 1, m: 2 };$0 let h = n + k; }", r" struct Counter { n: i32, m: i32 }; fn foo() { let (n, k) = fun_name(); let h = n + k; } fn $0fun_name() -> (i32, i32) { let Counter { n, m: k } = Counter { n: 1, m: 2 }; (n, k) }", ); } #[test] fn mut_var_from_outer_scope() { check_assist( extract_function, r" fn foo() { let mut n = 1; $0n += 1;$0 let m = n + 1; }", r" fn foo() { let mut n = 1; fun_name(&mut n); let m = n + 1; } fn $0fun_name(n: &mut i32) { *n += 1; }", ); } #[test] fn mut_field_from_outer_scope() { check_assist( extract_function, r" struct C { n: i32 } fn foo() { let mut c = C { n: 0 }; $0c.n += 1;$0 let m = c.n + 1; }", r" struct C { n: i32 } fn foo() { let mut c = C { n: 0 }; fun_name(&mut c); let m = c.n + 1; } fn $0fun_name(c: &mut C) { c.n += 1; }", ); } #[test] fn mut_nested_field_from_outer_scope() { check_assist( extract_function, r" struct P { n: i32} struct C { p: P } fn foo() { let mut c = C { p: P { n: 0 } }; let mut v = C { p: P { n: 0 } }; let u = C { p: P { n: 0 } }; $0c.p.n += u.p.n; let r = &mut v.p.n;$0 let m = c.p.n + v.p.n + u.p.n; }", r" struct P { n: i32} struct C { p: P } fn foo() { let mut c = C { p: P { n: 0 } }; let mut v = C { p: P { n: 0 } }; let u = C { p: P { n: 0 } }; fun_name(&mut c, &u, &mut v); let m = c.p.n + v.p.n + u.p.n; } fn $0fun_name(c: &mut C, u: &C, v: &mut C) { c.p.n += u.p.n; let r = &mut v.p.n; }", ); } #[test] fn mut_param_many_usages_stmt() { check_assist( extract_function, r" fn bar(k: i32) {} trait I: Copy { fn succ(&self) -> Self; fn inc(&mut self) -> Self { let v = self.succ(); *self = v; v } } impl I for i32 { fn succ(&self) -> Self { *self + 1 } } fn foo() { let mut n = 1; $0n += n; bar(n); bar(n+1); bar(n*n); bar(&n); n.inc(); let v = &mut n; *v = v.succ(); n.succ();$0 let m = n + 1; }", r" fn bar(k: i32) {} trait I: Copy { fn succ(&self) -> Self; fn inc(&mut self) -> Self { let v = self.succ(); *self = v; v } } impl I for i32 { fn succ(&self) -> Self { *self + 1 } } fn foo() { let mut n = 1; fun_name(&mut n); let m = n + 1; } fn $0fun_name(n: &mut i32) { *n += *n; bar(*n); bar(*n+1); bar(*n**n); bar(&*n); n.inc(); let v = n; *v = v.succ(); n.succ(); }", ); } #[test] fn mut_param_many_usages_expr() { check_assist( extract_function, r" fn bar(k: i32) {} trait I: Copy { fn succ(&self) -> Self; fn inc(&mut self) -> Self { let v = self.succ(); *self = v; v } } impl I for i32 { fn succ(&self) -> Self { *self + 1 } } fn foo() { let mut n = 1; $0{ n += n; bar(n); bar(n+1); bar(n*n); bar(&n); n.inc(); let v = &mut n; *v = v.succ(); n.succ(); }$0 let m = n + 1; }", r" fn bar(k: i32) {} trait I: Copy { fn succ(&self) -> Self; fn inc(&mut self) -> Self { let v = self.succ(); *self = v; v } } impl I for i32 { fn succ(&self) -> Self { *self + 1 } } fn foo() { let mut n = 1; fun_name(&mut n); let m = n + 1; } fn $0fun_name(n: &mut i32) { { *n += *n; bar(*n); bar(*n+1); bar(*n**n); bar(&*n); n.inc(); let v = n; *v = v.succ(); n.succ(); } }", ); } #[test] fn mut_param_by_value() { check_assist( extract_function, r" fn foo() { let mut n = 1; $0n += 1;$0 }", r" fn foo() { let mut n = 1; fun_name(n); } fn $0fun_name(mut n: i32) { n += 1; }", ); } #[test] fn mut_param_because_of_mut_ref() { check_assist( extract_function, r" fn foo() { let mut n = 1; $0let v = &mut n; *v += 1;$0 let k = n; }", r" fn foo() { let mut n = 1; fun_name(&mut n); let k = n; } fn $0fun_name(n: &mut i32) { let v = n; *v += 1; }", ); } #[test] fn mut_param_by_value_because_of_mut_ref() { check_assist( extract_function, r" fn foo() { let mut n = 1; $0let v = &mut n; *v += 1;$0 }", r" fn foo() { let mut n = 1; fun_name(n); } fn $0fun_name(mut n: i32) { let v = &mut n; *v += 1; }", ); } #[test] fn mut_method_call() { check_assist( extract_function, r" trait I { fn inc(&mut self); } impl I for i32 { fn inc(&mut self) { *self += 1 } } fn foo() { let mut n = 1; $0n.inc();$0 }", r" trait I { fn inc(&mut self); } impl I for i32 { fn inc(&mut self) { *self += 1 } } fn foo() { let mut n = 1; fun_name(n); } fn $0fun_name(mut n: i32) { n.inc(); }", ); } #[test] fn shared_method_call() { check_assist( extract_function, r" trait I { fn succ(&self); } impl I for i32 { fn succ(&self) { *self + 1 } } fn foo() { let mut n = 1; $0n.succ();$0 }", r" trait I { fn succ(&self); } impl I for i32 { fn succ(&self) { *self + 1 } } fn foo() { let mut n = 1; fun_name(n); } fn $0fun_name(n: i32) { n.succ(); }", ); } #[test] fn mut_method_call_with_other_receiver() { check_assist( extract_function, r" trait I { fn inc(&mut self, n: i32); } impl I for i32 { fn inc(&mut self, n: i32) { *self += n } } fn foo() { let mut n = 1; $0let mut m = 2; m.inc(n);$0 }", r" trait I { fn inc(&mut self, n: i32); } impl I for i32 { fn inc(&mut self, n: i32) { *self += n } } fn foo() { let mut n = 1; fun_name(n); } fn $0fun_name(n: i32) { let mut m = 2; m.inc(n); }", ); } #[test] fn non_copy_without_usages_after() { check_assist( extract_function, r" struct Counter(i32); fn foo() { let c = Counter(0); $0let n = c.0;$0 }", r" struct Counter(i32); fn foo() { let c = Counter(0); fun_name(c); } fn $0fun_name(c: Counter) { let n = c.0; }", ); } #[test] fn non_copy_used_after() { check_assist( extract_function, r" struct Counter(i32); fn foo() { let c = Counter(0); $0let n = c.0;$0 let m = c.0; }", r" struct Counter(i32); fn foo() { let c = Counter(0); fun_name(&c); let m = c.0; } fn $0fun_name(c: &Counter) { let n = c.0; }", ); } #[test] fn copy_used_after() { check_assist( extract_function, r##" #[lang = "copy"] pub trait Copy {} impl Copy for i32 {} fn foo() { let n = 0; $0let m = n;$0 let k = n; }"##, r##" #[lang = "copy"] pub trait Copy {} impl Copy for i32 {} fn foo() { let n = 0; fun_name(n); let k = n; } fn $0fun_name(n: i32) { let m = n; }"##, ) } #[test] fn copy_custom_used_after() { check_assist( extract_function, r##" #[lang = "copy"] pub trait Copy {} struct Counter(i32); impl Copy for Counter {} fn foo() { let c = Counter(0); $0let n = c.0;$0 let m = c.0; }"##, r##" #[lang = "copy"] pub trait Copy {} struct Counter(i32); impl Copy for Counter {} fn foo() { let c = Counter(0); fun_name(c); let m = c.0; } fn $0fun_name(c: Counter) { let n = c.0; }"##, ); } #[test] fn indented_stmts() { check_assist( extract_function, r" fn foo() { if true { loop { $0let n = 1; let m = 2;$0 } } }", r" fn foo() { if true { loop { fun_name(); } } } fn $0fun_name() { let n = 1; let m = 2; }", ); } #[test] fn indented_stmts_inside_mod() { check_assist( extract_function, r" mod bar { fn foo() { if true { loop { $0let n = 1; let m = 2;$0 } } } }", r" mod bar { fn foo() { if true { loop { fun_name(); } } } fn $0fun_name() { let n = 1; let m = 2; } }", ); } #[test] fn break_loop() { check_assist( extract_function, r##" enum Option { #[lang = "None"] None, #[lang = "Some"] Some(T), } use Option::*; fn foo() { loop { let n = 1; $0let m = n + 1; break; let k = 2;$0 let h = 1 + k; } }"##, r##" enum Option { #[lang = "None"] None, #[lang = "Some"] Some(T), } use Option::*; fn foo() { loop { let n = 1; let k = match fun_name(n) { Some(value) => value, None => break, }; let h = 1 + k; } } fn $0fun_name(n: i32) -> Option { let m = n + 1; return None; let k = 2; Some(k) }"##, ); } #[test] fn return_to_parent() { check_assist( extract_function, r##" #[lang = "copy"] pub trait Copy {} impl Copy for i32 {} enum Result { #[lang = "Ok"] Ok(T), #[lang = "Err"] Err(E), } use Result::*; fn foo() -> i64 { let n = 1; $0let m = n + 1; return 1; let k = 2;$0 (n + k) as i64 }"##, r##" #[lang = "copy"] pub trait Copy {} impl Copy for i32 {} enum Result { #[lang = "Ok"] Ok(T), #[lang = "Err"] Err(E), } use Result::*; fn foo() -> i64 { let n = 1; let k = match fun_name(n) { Ok(value) => value, Err(value) => return value, }; (n + k) as i64 } fn $0fun_name(n: i32) -> Result { let m = n + 1; return Err(1); let k = 2; Ok(k) }"##, ); } #[test] fn break_and_continue() { mark::check!(external_control_flow_break_and_continue); check_assist_not_applicable( extract_function, r##" fn foo() { loop { let n = 1; $0let m = n + 1; break; let k = 2; continue; let k = k + 1;$0 let r = n + k; } }"##, ); } #[test] fn return_and_break() { mark::check!(external_control_flow_return_and_bc); check_assist_not_applicable( extract_function, r##" fn foo() { loop { let n = 1; $0let m = n + 1; break; let k = 2; return; let k = k + 1;$0 let r = n + k; } }"##, ); } #[test] fn break_loop_with_if() { check_assist( extract_function, r##" fn foo() { loop { let mut n = 1; $0let m = n + 1; break; n += m;$0 let h = 1 + n; } }"##, r##" fn foo() { loop { let mut n = 1; if fun_name(&mut n) { break; } let h = 1 + n; } } fn $0fun_name(n: &mut i32) -> bool { let m = *n + 1; return true; *n += m; false }"##, ); } #[test] fn break_loop_nested() { check_assist( extract_function, r##" fn foo() { loop { let mut n = 1; $0let m = n + 1; if m == 42 { break; }$0 let h = 1; } }"##, r##" fn foo() { loop { let mut n = 1; if fun_name(n) { break; } let h = 1; } } fn $0fun_name(n: i32) -> bool { let m = n + 1; if m == 42 { return true; } false }"##, ); } #[test] fn return_from_nested_loop() { check_assist( extract_function, r##" fn foo() { loop { let n = 1; $0 let k = 1; loop { return; } let m = k + 1;$0 let h = 1 + m; } }"##, r##" fn foo() { loop { let n = 1; let m = match fun_name() { Some(value) => value, None => return, }; let h = 1 + m; } } fn $0fun_name() -> Option { let k = 1; loop { return None; } let m = k + 1; Some(m) }"##, ); } #[test] fn break_from_nested_loop() { check_assist( extract_function, r##" fn foo() { loop { let n = 1; $0let k = 1; loop { break; } let m = k + 1;$0 let h = 1 + m; } }"##, r##" fn foo() { loop { let n = 1; let m = fun_name(); let h = 1 + m; } } fn $0fun_name() -> i32 { let k = 1; loop { break; } let m = k + 1; m }"##, ); } #[test] fn break_from_nested_and_outer_loops() { check_assist( extract_function, r##" fn foo() { loop { let n = 1; $0let k = 1; loop { break; } if k == 42 { break; } let m = k + 1;$0 let h = 1 + m; } }"##, r##" fn foo() { loop { let n = 1; let m = match fun_name() { Some(value) => value, None => break, }; let h = 1 + m; } } fn $0fun_name() -> Option { let k = 1; loop { break; } if k == 42 { return None; } let m = k + 1; Some(m) }"##, ); } #[test] fn return_from_nested_fn() { check_assist( extract_function, r##" fn foo() { loop { let n = 1; $0let k = 1; fn test() { return; } let m = k + 1;$0 let h = 1 + m; } }"##, r##" fn foo() { loop { let n = 1; let m = fun_name(); let h = 1 + m; } } fn $0fun_name() -> i32 { let k = 1; fn test() { return; } let m = k + 1; m }"##, ); } #[test] fn break_with_value() { check_assist( extract_function, r##" fn foo() -> i32 { loop { let n = 1; $0let k = 1; if k == 42 { break 3; } let m = k + 1;$0 let h = 1; } }"##, r##" fn foo() -> i32 { loop { let n = 1; if let Some(value) = fun_name() { break value; } let h = 1; } } fn $0fun_name() -> Option { let k = 1; if k == 42 { return Some(3); } let m = k + 1; None }"##, ); } #[test] fn break_with_value_and_return() { check_assist( extract_function, r##" fn foo() -> i64 { loop { let n = 1; $0 let k = 1; if k == 42 { break 3; } let m = k + 1;$0 let h = 1 + m; } }"##, r##" fn foo() -> i64 { loop { let n = 1; let m = match fun_name() { Ok(value) => value, Err(value) => break value, }; let h = 1 + m; } } fn $0fun_name() -> Result { let k = 1; if k == 42 { return Err(3); } let m = k + 1; Ok(m) }"##, ); } #[test] fn try_option() { check_assist( extract_function, r##" enum Option { None, Some(T), } use Option::*; fn bar() -> Option { None } fn foo() -> Option<()> { let n = bar()?; $0let k = foo()?; let m = k + 1;$0 let h = 1 + m; Some(()) }"##, r##" enum Option { None, Some(T), } use Option::*; fn bar() -> Option { None } fn foo() -> Option<()> { let n = bar()?; let m = fun_name()?; let h = 1 + m; Some(()) } fn $0fun_name() -> Option { let k = foo()?; let m = k + 1; Some(m) }"##, ); } #[test] fn try_option_unit() { check_assist( extract_function, r##" enum Option { None, Some(T), } use Option::*; fn foo() -> Option<()> { let n = 1; $0let k = foo()?; let m = k + 1;$0 let h = 1 + n; Some(()) }"##, r##" enum Option { None, Some(T), } use Option::*; fn foo() -> Option<()> { let n = 1; fun_name()?; let h = 1 + n; Some(()) } fn $0fun_name() -> Option<()> { let k = foo()?; let m = k + 1; Some(()) }"##, ); } #[test] fn try_result() { check_assist( extract_function, r##" enum Result { Ok(T), Err(E), } use Result::*; fn foo() -> Result<(), i64> { let n = 1; $0let k = foo()?; let m = k + 1;$0 let h = 1 + m; Ok(()) }"##, r##" enum Result { Ok(T), Err(E), } use Result::*; fn foo() -> Result<(), i64> { let n = 1; let m = fun_name()?; let h = 1 + m; Ok(()) } fn $0fun_name() -> Result { let k = foo()?; let m = k + 1; Ok(m) }"##, ); } #[test] fn try_result_with_return() { check_assist( extract_function, r##" enum Result { Ok(T), Err(E), } use Result::*; fn foo() -> Result<(), i64> { let n = 1; $0let k = foo()?; if k == 42 { return Err(1); } let m = k + 1;$0 let h = 1 + m; Ok(()) }"##, r##" enum Result { Ok(T), Err(E), } use Result::*; fn foo() -> Result<(), i64> { let n = 1; let m = fun_name()?; let h = 1 + m; Ok(()) } fn $0fun_name() -> Result { let k = foo()?; if k == 42 { return Err(1); } let m = k + 1; Ok(m) }"##, ); } #[test] fn try_and_break() { mark::check!(external_control_flow_try_and_bc); check_assist_not_applicable( extract_function, r##" enum Option { None, Some(T) } use Option::*; fn foo() -> Option<()> { loop { let n = Some(1); $0let m = n? + 1; break; let k = 2; let k = k + 1;$0 let r = n + k; } Some(()) }"##, ); } #[test] fn try_and_return_ok() { mark::check!(external_control_flow_try_and_return_non_err); check_assist_not_applicable( extract_function, r##" enum Result { Ok(T), Err(E), } use Result::*; fn foo() -> Result<(), i64> { let n = 1; $0let k = foo()?; if k == 42 { return Ok(1); } let m = k + 1;$0 let h = 1 + m; Ok(()) }"##, ); } }