//! Contains basic data about various HIR declarations. pub mod adt; use std::sync::Arc; use hir_expand::{name::Name, AstId, ExpandResult, HirFileId, InFile, MacroCallId, MacroDefKind}; use intern::Interned; use smallvec::SmallVec; use syntax::{ast, Parse}; use crate::{ attr::Attrs, db::DefDatabase, expander::{Expander, Mark}, item_tree::{self, AssocItem, FnFlags, ItemTree, ItemTreeId, ModItem, Param, TreeId}, nameres::{ attr_resolution::ResolvedAttr, diagnostics::DefDiagnostic, proc_macro::{parse_macro_name_and_helper_attrs, ProcMacroKind}, DefMap, }, type_ref::{TraitRef, TypeBound, TypeRef}, visibility::RawVisibility, AssocItemId, AstIdWithPath, ConstId, ConstLoc, FunctionId, FunctionLoc, HasModule, ImplId, Intern, ItemContainerId, ItemLoc, Lookup, Macro2Id, MacroRulesId, ModuleId, ProcMacroId, StaticId, TraitAliasId, TraitId, TypeAliasId, TypeAliasLoc, }; #[derive(Debug, Clone, PartialEq, Eq)] pub struct FunctionData { pub name: Name, pub params: Vec>, pub ret_type: Interned, pub attrs: Attrs, pub visibility: RawVisibility, pub abi: Option>, pub legacy_const_generics_indices: Box<[u32]>, pub rustc_allow_incoherent_impl: bool, flags: FnFlags, } impl FunctionData { pub(crate) fn fn_data_query(db: &dyn DefDatabase, func: FunctionId) -> Arc { let loc = func.lookup(db); let krate = loc.container.module(db).krate; let item_tree = loc.id.item_tree(db); let func = &item_tree[loc.id.value]; let visibility = if let ItemContainerId::TraitId(trait_id) = loc.container { trait_vis(db, trait_id) } else { item_tree[func.visibility].clone() }; let crate_graph = db.crate_graph(); let cfg_options = &crate_graph[krate].cfg_options; let enabled_params = func .params .clone() .filter(|¶m| item_tree.attrs(db, krate, param.into()).is_cfg_enabled(cfg_options)); // If last cfg-enabled param is a `...` param, it's a varargs function. let is_varargs = enabled_params .clone() .next_back() .map_or(false, |param| matches!(item_tree[param], Param::Varargs)); let mut flags = func.flags; if is_varargs { flags |= FnFlags::IS_VARARGS; } if flags.contains(FnFlags::HAS_SELF_PARAM) { // If there's a self param in the syntax, but it is cfg'd out, remove the flag. let is_cfgd_out = match func.params.clone().next() { Some(param) => { !item_tree.attrs(db, krate, param.into()).is_cfg_enabled(cfg_options) } None => { stdx::never!("fn HAS_SELF_PARAM but no parameters allocated"); true } }; if is_cfgd_out { cov_mark::hit!(cfgd_out_self_param); flags.remove(FnFlags::HAS_SELF_PARAM); } } let attrs = item_tree.attrs(db, krate, ModItem::from(loc.id.value).into()); let legacy_const_generics_indices = attrs .by_key("rustc_legacy_const_generics") .tt_values() .next() .map(parse_rustc_legacy_const_generics) .unwrap_or_default(); let rustc_allow_incoherent_impl = attrs.by_key("rustc_allow_incoherent_impl").exists(); Arc::new(FunctionData { name: func.name.clone(), params: enabled_params .clone() .filter_map(|id| match &item_tree[id] { Param::Normal(ty) => Some(ty.clone()), Param::Varargs => None, }) .collect(), ret_type: func.ret_type.clone(), attrs: item_tree.attrs(db, krate, ModItem::from(loc.id.value).into()), visibility, abi: func.abi.clone(), legacy_const_generics_indices, flags, rustc_allow_incoherent_impl, }) } pub fn has_body(&self) -> bool { self.flags.contains(FnFlags::HAS_BODY) } /// True if the first param is `self`. This is relevant to decide whether this /// can be called as a method. pub fn has_self_param(&self) -> bool { self.flags.contains(FnFlags::HAS_SELF_PARAM) } pub fn has_default_kw(&self) -> bool { self.flags.contains(FnFlags::HAS_DEFAULT_KW) } pub fn has_const_kw(&self) -> bool { self.flags.contains(FnFlags::HAS_CONST_KW) } pub fn has_async_kw(&self) -> bool { self.flags.contains(FnFlags::HAS_ASYNC_KW) } pub fn has_unsafe_kw(&self) -> bool { self.flags.contains(FnFlags::HAS_UNSAFE_KW) } pub fn is_varargs(&self) -> bool { self.flags.contains(FnFlags::IS_VARARGS) } } fn parse_rustc_legacy_const_generics(tt: &crate::tt::Subtree) -> Box<[u32]> { let mut indices = Vec::new(); for args in tt.token_trees.chunks(2) { match &args[0] { tt::TokenTree::Leaf(tt::Leaf::Literal(lit)) => match lit.text.parse() { Ok(index) => indices.push(index), Err(_) => break, }, _ => break, } if let Some(comma) = args.get(1) { match comma { tt::TokenTree::Leaf(tt::Leaf::Punct(punct)) if punct.char == ',' => {} _ => break, } } } indices.into_boxed_slice() } #[derive(Debug, Clone, PartialEq, Eq)] pub struct TypeAliasData { pub name: Name, pub type_ref: Option>, pub visibility: RawVisibility, pub is_extern: bool, pub rustc_has_incoherent_inherent_impls: bool, pub rustc_allow_incoherent_impl: bool, /// Bounds restricting the type alias itself (eg. `type Ty: Bound;` in a trait or impl). pub bounds: Vec>, } impl TypeAliasData { pub(crate) fn type_alias_data_query( db: &dyn DefDatabase, typ: TypeAliasId, ) -> Arc { let loc = typ.lookup(db); let item_tree = loc.id.item_tree(db); let typ = &item_tree[loc.id.value]; let visibility = if let ItemContainerId::TraitId(trait_id) = loc.container { trait_vis(db, trait_id) } else { item_tree[typ.visibility].clone() }; let attrs = item_tree.attrs( db, loc.container.module(db).krate(), ModItem::from(loc.id.value).into(), ); let rustc_has_incoherent_inherent_impls = attrs.by_key("rustc_has_incoherent_inherent_impls").exists(); let rustc_allow_incoherent_impl = attrs.by_key("rustc_allow_incoherent_impl").exists(); Arc::new(TypeAliasData { name: typ.name.clone(), type_ref: typ.type_ref.clone(), visibility, is_extern: matches!(loc.container, ItemContainerId::ExternBlockId(_)), rustc_has_incoherent_inherent_impls, rustc_allow_incoherent_impl, bounds: typ.bounds.to_vec(), }) } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct TraitData { pub name: Name, pub items: Vec<(Name, AssocItemId)>, pub is_auto: bool, pub is_unsafe: bool, pub rustc_has_incoherent_inherent_impls: bool, pub skip_array_during_method_dispatch: bool, pub fundamental: bool, pub visibility: RawVisibility, /// Whether the trait has `#[rust_skip_array_during_method_dispatch]`. `hir_ty` will ignore /// method calls to this trait's methods when the receiver is an array and the crate edition is /// 2015 or 2018. // box it as the vec is usually empty anyways pub attribute_calls: Option, MacroCallId)>>>, } impl TraitData { pub(crate) fn trait_data_query(db: &dyn DefDatabase, tr: TraitId) -> Arc { db.trait_data_with_diagnostics(tr).0 } pub(crate) fn trait_data_with_diagnostics_query( db: &dyn DefDatabase, tr: TraitId, ) -> (Arc, Arc<[DefDiagnostic]>) { let tr_loc @ ItemLoc { container: module_id, id: tree_id } = tr.lookup(db); let item_tree = tree_id.item_tree(db); let tr_def = &item_tree[tree_id.value]; let _cx = stdx::panic_context::enter(format!( "trait_data_query({tr:?} -> {tr_loc:?} -> {tr_def:?})" )); let name = tr_def.name.clone(); let is_auto = tr_def.is_auto; let is_unsafe = tr_def.is_unsafe; let visibility = item_tree[tr_def.visibility].clone(); let attrs = item_tree.attrs(db, module_id.krate(), ModItem::from(tree_id.value).into()); let skip_array_during_method_dispatch = attrs.by_key("rustc_skip_array_during_method_dispatch").exists(); let rustc_has_incoherent_inherent_impls = attrs.by_key("rustc_has_incoherent_inherent_impls").exists(); let fundamental = attrs.by_key("fundamental").exists(); let mut collector = AssocItemCollector::new(db, module_id, tree_id.file_id(), ItemContainerId::TraitId(tr)); collector.collect(&item_tree, tree_id.tree_id(), &tr_def.items); let (items, attribute_calls, diagnostics) = collector.finish(); ( Arc::new(TraitData { name, attribute_calls, items, is_auto, is_unsafe, visibility, skip_array_during_method_dispatch, rustc_has_incoherent_inherent_impls, fundamental, }), diagnostics.into(), ) } pub fn associated_types(&self) -> impl Iterator + '_ { self.items.iter().filter_map(|(_name, item)| match item { AssocItemId::TypeAliasId(t) => Some(*t), _ => None, }) } pub fn associated_type_by_name(&self, name: &Name) -> Option { self.items.iter().find_map(|(item_name, item)| match item { AssocItemId::TypeAliasId(t) if item_name == name => Some(*t), _ => None, }) } pub fn method_by_name(&self, name: &Name) -> Option { self.items.iter().find_map(|(item_name, item)| match item { AssocItemId::FunctionId(t) if item_name == name => Some(*t), _ => None, }) } pub fn attribute_calls(&self) -> impl Iterator, MacroCallId)> + '_ { self.attribute_calls.iter().flat_map(|it| it.iter()).copied() } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct TraitAliasData { pub name: Name, pub visibility: RawVisibility, } impl TraitAliasData { pub(crate) fn trait_alias_query(db: &dyn DefDatabase, id: TraitAliasId) -> Arc { let loc = id.lookup(db); let item_tree = loc.id.item_tree(db); let alias = &item_tree[loc.id.value]; let visibility = item_tree[alias.visibility].clone(); Arc::new(TraitAliasData { name: alias.name.clone(), visibility }) } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct ImplData { pub target_trait: Option>, pub self_ty: Interned, pub items: Vec, pub is_negative: bool, // box it as the vec is usually empty anyways pub attribute_calls: Option, MacroCallId)>>>, } impl ImplData { pub(crate) fn impl_data_query(db: &dyn DefDatabase, id: ImplId) -> Arc { db.impl_data_with_diagnostics(id).0 } pub(crate) fn impl_data_with_diagnostics_query( db: &dyn DefDatabase, id: ImplId, ) -> (Arc, Arc<[DefDiagnostic]>) { let _p = profile::span("impl_data_with_diagnostics_query"); let ItemLoc { container: module_id, id: tree_id } = id.lookup(db); let item_tree = tree_id.item_tree(db); let impl_def = &item_tree[tree_id.value]; let target_trait = impl_def.target_trait.clone(); let self_ty = impl_def.self_ty.clone(); let is_negative = impl_def.is_negative; let mut collector = AssocItemCollector::new(db, module_id, tree_id.file_id(), ItemContainerId::ImplId(id)); collector.collect(&item_tree, tree_id.tree_id(), &impl_def.items); let (items, attribute_calls, diagnostics) = collector.finish(); let items = items.into_iter().map(|(_, item)| item).collect(); ( Arc::new(ImplData { target_trait, self_ty, items, is_negative, attribute_calls }), diagnostics.into(), ) } pub fn attribute_calls(&self) -> impl Iterator, MacroCallId)> + '_ { self.attribute_calls.iter().flat_map(|it| it.iter()).copied() } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct Macro2Data { pub name: Name, pub visibility: RawVisibility, // It's a bit wasteful as currently this is only for builtin `Default` derive macro, but macro2 // are rarely used in practice so I think it's okay for now. /// Derive helpers, if this is a derive rustc_builtin_macro pub helpers: Option>, } impl Macro2Data { pub(crate) fn macro2_data_query(db: &dyn DefDatabase, makro: Macro2Id) -> Arc { let loc = makro.lookup(db); let item_tree = loc.id.item_tree(db); let makro = &item_tree[loc.id.value]; let helpers = item_tree .attrs(db, loc.container.krate(), ModItem::from(loc.id.value).into()) .by_key("rustc_builtin_macro") .tt_values() .next() .and_then(|attr| parse_macro_name_and_helper_attrs(&attr.token_trees)) .map(|(_, helpers)| helpers); Arc::new(Macro2Data { name: makro.name.clone(), visibility: item_tree[makro.visibility].clone(), helpers, }) } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct MacroRulesData { pub name: Name, pub macro_export: bool, } impl MacroRulesData { pub(crate) fn macro_rules_data_query( db: &dyn DefDatabase, makro: MacroRulesId, ) -> Arc { let loc = makro.lookup(db); let item_tree = loc.id.item_tree(db); let makro = &item_tree[loc.id.value]; let macro_export = item_tree .attrs(db, loc.container.krate(), ModItem::from(loc.id.value).into()) .by_key("macro_export") .exists(); Arc::new(MacroRulesData { name: makro.name.clone(), macro_export }) } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct ProcMacroData { pub name: Name, /// Derive helpers, if this is a derive pub helpers: Option>, } impl ProcMacroData { pub(crate) fn proc_macro_data_query( db: &dyn DefDatabase, makro: ProcMacroId, ) -> Arc { let loc = makro.lookup(db); let item_tree = loc.id.item_tree(db); let makro = &item_tree[loc.id.value]; let (name, helpers) = if let Some(def) = item_tree .attrs(db, loc.container.krate(), ModItem::from(loc.id.value).into()) .parse_proc_macro_decl(&makro.name) { ( def.name, match def.kind { ProcMacroKind::CustomDerive { helpers } => Some(helpers), ProcMacroKind::FnLike | ProcMacroKind::Attr => None, }, ) } else { // eeeh... stdx::never!("proc macro declaration is not a proc macro"); (makro.name.clone(), None) }; Arc::new(ProcMacroData { name, helpers }) } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct ConstData { /// `None` for `const _: () = ();` pub name: Option, pub type_ref: Interned, pub visibility: RawVisibility, pub rustc_allow_incoherent_impl: bool, } impl ConstData { pub(crate) fn const_data_query(db: &dyn DefDatabase, konst: ConstId) -> Arc { let loc = konst.lookup(db); let item_tree = loc.id.item_tree(db); let konst = &item_tree[loc.id.value]; let visibility = if let ItemContainerId::TraitId(trait_id) = loc.container { trait_vis(db, trait_id) } else { item_tree[konst.visibility].clone() }; let rustc_allow_incoherent_impl = item_tree .attrs(db, loc.container.module(db).krate(), ModItem::from(loc.id.value).into()) .by_key("rustc_allow_incoherent_impl") .exists(); Arc::new(ConstData { name: konst.name.clone(), type_ref: konst.type_ref.clone(), visibility, rustc_allow_incoherent_impl, }) } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct StaticData { pub name: Name, pub type_ref: Interned, pub visibility: RawVisibility, pub mutable: bool, pub is_extern: bool, } impl StaticData { pub(crate) fn static_data_query(db: &dyn DefDatabase, konst: StaticId) -> Arc { let loc = konst.lookup(db); let item_tree = loc.id.item_tree(db); let statik = &item_tree[loc.id.value]; Arc::new(StaticData { name: statik.name.clone(), type_ref: statik.type_ref.clone(), visibility: item_tree[statik.visibility].clone(), mutable: statik.mutable, is_extern: matches!(loc.container, ItemContainerId::ExternBlockId(_)), }) } } struct AssocItemCollector<'a> { db: &'a dyn DefDatabase, module_id: ModuleId, def_map: Arc, inactive_diagnostics: Vec, container: ItemContainerId, expander: Expander, items: Vec<(Name, AssocItemId)>, attr_calls: Vec<(AstId, MacroCallId)>, } impl<'a> AssocItemCollector<'a> { fn new( db: &'a dyn DefDatabase, module_id: ModuleId, file_id: HirFileId, container: ItemContainerId, ) -> Self { Self { db, module_id, def_map: module_id.def_map(db), container, expander: Expander::new(db, file_id, module_id), items: Vec::new(), attr_calls: Vec::new(), inactive_diagnostics: Vec::new(), } } fn finish( self, ) -> ( Vec<(Name, AssocItemId)>, Option, MacroCallId)>>>, Vec, ) { ( self.items, if self.attr_calls.is_empty() { None } else { Some(Box::new(self.attr_calls)) }, self.inactive_diagnostics, ) } // FIXME: proc-macro diagnostics fn collect(&mut self, item_tree: &ItemTree, tree_id: TreeId, assoc_items: &[AssocItem]) { let container = self.container; self.items.reserve(assoc_items.len()); 'items: for &item in assoc_items { let attrs = item_tree.attrs(self.db, self.module_id.krate, ModItem::from(item).into()); if !attrs.is_cfg_enabled(self.expander.cfg_options()) { self.inactive_diagnostics.push(DefDiagnostic::unconfigured_code( self.module_id.local_id, InFile::new(self.expander.current_file_id(), item.ast_id(item_tree).upcast()), attrs.cfg().unwrap(), self.expander.cfg_options().clone(), )); continue; } 'attrs: for attr in &*attrs { let ast_id = AstId::new(self.expander.current_file_id(), item.ast_id(item_tree).upcast()); let ast_id_with_path = AstIdWithPath { path: (*attr.path).clone(), ast_id }; if let Ok(ResolvedAttr::Macro(call_id)) = self.def_map.resolve_attr_macro( self.db, self.module_id.local_id, ast_id_with_path, attr, ) { self.attr_calls.push((ast_id, call_id)); // If proc attribute macro expansion is disabled, skip expanding it here if !self.db.expand_proc_attr_macros() { continue 'attrs; } let loc = self.db.lookup_intern_macro_call(call_id); if let MacroDefKind::ProcMacro(exp, ..) = loc.def.kind { // If there's no expander for the proc macro (e.g. the // proc macro is ignored, or building the proc macro // crate failed), skip expansion like we would if it was // disabled. This is analogous to the handling in // `DefCollector::collect_macros`. if exp.is_dummy() { continue 'attrs; } } let res = self.expander.enter_expand_id::(self.db, call_id); self.collect_macro_items(res, &|| loc.kind.clone()); continue 'items; } } match item { AssocItem::Function(id) => { let item = &item_tree[id]; let def = FunctionLoc { container, id: ItemTreeId::new(tree_id, id) }.intern(self.db); self.items.push((item.name.clone(), def.into())); } AssocItem::Const(id) => { let item = &item_tree[id]; let name = match item.name.clone() { Some(name) => name, None => continue, }; let def = ConstLoc { container, id: ItemTreeId::new(tree_id, id) }.intern(self.db); self.items.push((name, def.into())); } AssocItem::TypeAlias(id) => { let item = &item_tree[id]; let def = TypeAliasLoc { container, id: ItemTreeId::new(tree_id, id) } .intern(self.db); self.items.push((item.name.clone(), def.into())); } AssocItem::MacroCall(call) => { let file_id = self.expander.current_file_id(); let root = self.db.parse_or_expand(file_id); let call = &item_tree[call]; let ast_id_map = self.db.ast_id_map(file_id); let macro_call = ast_id_map.get(call.ast_id).to_node(&root); let _cx = stdx::panic_context::enter(format!( "collect_items MacroCall: {macro_call}" )); let module = self.expander.module.local_id; if let Ok(res) = self.expander.enter_expand::(self.db, macro_call, |path| { self.def_map .resolve_path( self.db, module, &path, crate::item_scope::BuiltinShadowMode::Other, ) .0 .take_macros() }) { self.collect_macro_items(res, &|| hir_expand::MacroCallKind::FnLike { ast_id: InFile::new(file_id, call.ast_id), expand_to: hir_expand::ExpandTo::Items, }); } } } } } fn collect_macro_items( &mut self, ExpandResult { value, err }: ExpandResult)>>, error_call_kind: &dyn Fn() -> hir_expand::MacroCallKind, ) { let Some((mark, parse)) = value else { return }; if let Some(err) = err { self.inactive_diagnostics.push(DefDiagnostic::macro_error( self.module_id.local_id, error_call_kind(), err.to_string(), )); } if let errors @ [_, ..] = parse.errors() { self.inactive_diagnostics.push(DefDiagnostic::macro_expansion_parse_error( self.module_id.local_id, error_call_kind(), errors.into(), )); } let tree_id = item_tree::TreeId::new(self.expander.current_file_id(), None); let item_tree = tree_id.item_tree(self.db); let iter: SmallVec<[_; 2]> = item_tree.top_level_items().iter().filter_map(ModItem::as_assoc_item).collect(); self.collect(&item_tree, tree_id, &iter); self.expander.exit(self.db, mark); } } fn trait_vis(db: &dyn DefDatabase, trait_id: TraitId) -> RawVisibility { let ItemLoc { id: tree_id, .. } = trait_id.lookup(db); let item_tree = tree_id.item_tree(db); let tr_def = &item_tree[tree_id.value]; item_tree[tr_def.visibility].clone() }