//! Type inference for patterns. use std::iter::repeat_with; use chalk_ir::Mutability; use hir_def::{ body::Body, hir::{Binding, BindingAnnotation, BindingId, Expr, ExprId, ExprOrPatId, Literal, Pat, PatId}, path::Path, }; use hir_expand::name::Name; use crate::{ consteval::{try_const_usize, usize_const}, infer::{BindingMode, Expectation, InferenceContext, TypeMismatch}, lower::lower_to_chalk_mutability, primitive::UintTy, static_lifetime, InferenceDiagnostic, Interner, Scalar, Substitution, Ty, TyBuilder, TyExt, TyKind, }; /// Used to generalize patterns and assignee expressions. pub(super) trait PatLike: Into + Copy { type BindingMode: Copy; fn infer( this: &mut InferenceContext<'_>, id: Self, expected_ty: &Ty, default_bm: Self::BindingMode, ) -> Ty; } impl PatLike for ExprId { type BindingMode = (); fn infer( this: &mut InferenceContext<'_>, id: Self, expected_ty: &Ty, (): Self::BindingMode, ) -> Ty { this.infer_assignee_expr(id, expected_ty) } } impl PatLike for PatId { type BindingMode = BindingMode; fn infer( this: &mut InferenceContext<'_>, id: Self, expected_ty: &Ty, default_bm: Self::BindingMode, ) -> Ty { this.infer_pat(id, expected_ty, default_bm) } } impl InferenceContext<'_> { /// Infers type for tuple struct pattern or its corresponding assignee expression. /// /// Ellipses found in the original pattern or expression must be filtered out. pub(super) fn infer_tuple_struct_pat_like( &mut self, path: Option<&Path>, expected: &Ty, default_bm: T::BindingMode, id: T, ellipsis: Option, subs: &[T], ) -> Ty { let (ty, def) = self.resolve_variant(path, true); let var_data = def.map(|it| it.variant_data(self.db.upcast())); if let Some(variant) = def { self.write_variant_resolution(id.into(), variant); } if let Some(var) = &var_data { let cmp = if ellipsis.is_some() { usize::gt } else { usize::ne }; if cmp(&subs.len(), &var.fields().len()) { self.push_diagnostic(InferenceDiagnostic::MismatchedTupleStructPatArgCount { pat: id.into(), expected: var.fields().len(), found: subs.len(), }); } } self.unify(&ty, expected); let substs = ty.as_adt().map(|(_, s)| s.clone()).unwrap_or_else(|| Substitution::empty(Interner)); match def { _ if subs.len() == 0 => {} Some(def) => { let field_types = self.db.field_types(def); let variant_data = def.variant_data(self.db.upcast()); let visibilities = self.db.field_visibilities(def); let (pre, post) = match ellipsis { Some(idx) => subs.split_at(idx), None => (subs, &[][..]), }; let post_idx_offset = field_types.iter().count().saturating_sub(post.len()); let pre_iter = pre.iter().enumerate(); let post_iter = (post_idx_offset..).zip(post.iter()); for (i, &subpat) in pre_iter.chain(post_iter) { let field_def = { match variant_data.field(&Name::new_tuple_field(i)) { Some(local_id) => { if !visibilities[local_id] .is_visible_from(self.db.upcast(), self.resolver.module()) { // FIXME(DIAGNOSE): private tuple field } Some(local_id) } None => None, } }; let expected_ty = field_def.map_or(self.err_ty(), |f| { field_types[f].clone().substitute(Interner, &substs) }); let expected_ty = self.normalize_associated_types_in(expected_ty); T::infer(self, subpat, &expected_ty, default_bm); } } None => { let err_ty = self.err_ty(); for &inner in subs { T::infer(self, inner, &err_ty, default_bm); } } } ty } /// Infers type for record pattern or its corresponding assignee expression. pub(super) fn infer_record_pat_like( &mut self, path: Option<&Path>, expected: &Ty, default_bm: T::BindingMode, id: T, subs: impl Iterator + ExactSizeIterator, ) -> Ty { let (ty, def) = self.resolve_variant(path, false); if let Some(variant) = def { self.write_variant_resolution(id.into(), variant); } self.unify(&ty, expected); let substs = ty.as_adt().map(|(_, s)| s.clone()).unwrap_or_else(|| Substitution::empty(Interner)); match def { _ if subs.len() == 0 => {} Some(def) => { let field_types = self.db.field_types(def); let variant_data = def.variant_data(self.db.upcast()); let visibilities = self.db.field_visibilities(def); for (name, inner) in subs { let field_def = { match variant_data.field(&name) { Some(local_id) => { if !visibilities[local_id] .is_visible_from(self.db.upcast(), self.resolver.module()) { self.push_diagnostic(InferenceDiagnostic::NoSuchField { field: inner.into(), private: true, }); } Some(local_id) } None => { self.push_diagnostic(InferenceDiagnostic::NoSuchField { field: inner.into(), private: false, }); None } } }; let expected_ty = field_def.map_or(self.err_ty(), |f| { field_types[f].clone().substitute(Interner, &substs) }); let expected_ty = self.normalize_associated_types_in(expected_ty); T::infer(self, inner, &expected_ty, default_bm); } } None => { let err_ty = self.err_ty(); for (_, inner) in subs { T::infer(self, inner, &err_ty, default_bm); } } } ty } /// Infers type for tuple pattern or its corresponding assignee expression. /// /// Ellipses found in the original pattern or expression must be filtered out. pub(super) fn infer_tuple_pat_like( &mut self, expected: &Ty, default_bm: T::BindingMode, ellipsis: Option, subs: &[T], ) -> Ty { let expected = self.resolve_ty_shallow(expected); let expectations = match expected.as_tuple() { Some(parameters) => &*parameters.as_slice(Interner), _ => &[], }; let ((pre, post), n_uncovered_patterns) = match ellipsis { Some(idx) => (subs.split_at(idx), expectations.len().saturating_sub(subs.len())), None => ((&subs[..], &[][..]), 0), }; let mut expectations_iter = expectations .iter() .map(|a| a.assert_ty_ref(Interner).clone()) .chain(repeat_with(|| self.table.new_type_var())); let mut inner_tys = Vec::with_capacity(n_uncovered_patterns + subs.len()); inner_tys.extend(expectations_iter.by_ref().take(n_uncovered_patterns + subs.len())); // Process pre for (ty, pat) in inner_tys.iter_mut().zip(pre) { *ty = T::infer(self, *pat, ty, default_bm); } // Process post for (ty, pat) in inner_tys.iter_mut().skip(pre.len() + n_uncovered_patterns).zip(post) { *ty = T::infer(self, *pat, ty, default_bm); } TyKind::Tuple(inner_tys.len(), Substitution::from_iter(Interner, inner_tys)) .intern(Interner) } pub(super) fn infer_top_pat(&mut self, pat: PatId, expected: &Ty) { self.infer_pat(pat, expected, BindingMode::default()); } fn infer_pat(&mut self, pat: PatId, expected: &Ty, mut default_bm: BindingMode) -> Ty { let mut expected = self.resolve_ty_shallow(expected); if self.is_non_ref_pat(self.body, pat) { let mut pat_adjustments = Vec::new(); while let Some((inner, _lifetime, mutability)) = expected.as_reference() { pat_adjustments.push(expected.clone()); expected = self.resolve_ty_shallow(inner); default_bm = match default_bm { BindingMode::Move => BindingMode::Ref(mutability), BindingMode::Ref(Mutability::Not) => BindingMode::Ref(Mutability::Not), BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability), } } if !pat_adjustments.is_empty() { pat_adjustments.shrink_to_fit(); self.result.pat_adjustments.insert(pat, pat_adjustments); } } else if let Pat::Ref { .. } = &self.body[pat] { cov_mark::hit!(match_ergonomics_ref); // When you encounter a `&pat` pattern, reset to Move. // This is so that `w` is by value: `let (_, &w) = &(1, &2);` default_bm = BindingMode::Move; } // Lose mutability. let default_bm = default_bm; let expected = expected; let ty = match &self.body[pat] { Pat::Tuple { args, ellipsis } => { self.infer_tuple_pat_like(&expected, default_bm, *ellipsis, args) } Pat::Or(pats) => { for pat in pats.iter() { self.infer_pat(*pat, &expected, default_bm); } expected.clone() } &Pat::Ref { pat, mutability } => self.infer_ref_pat( pat, lower_to_chalk_mutability(mutability), &expected, default_bm, ), Pat::TupleStruct { path: p, args: subpats, ellipsis } => self .infer_tuple_struct_pat_like( p.as_deref(), &expected, default_bm, pat, *ellipsis, subpats, ), Pat::Record { path: p, args: fields, ellipsis: _ } => { let subs = fields.iter().map(|f| (f.name.clone(), f.pat)); self.infer_record_pat_like(p.as_deref(), &expected, default_bm, pat, subs) } Pat::Path(path) => { // FIXME update resolver for the surrounding expression self.infer_path(path, pat.into()).unwrap_or_else(|| self.err_ty()) } Pat::Bind { id, subpat } => { return self.infer_bind_pat(pat, *id, default_bm, *subpat, &expected); } Pat::Slice { prefix, slice, suffix } => { self.infer_slice_pat(&expected, prefix, slice, suffix, default_bm) } Pat::Wild => expected.clone(), Pat::Range { .. } => { // FIXME: do some checks here. expected.clone() } &Pat::Lit(expr) => { // Don't emit type mismatches again, the expression lowering already did that. let ty = self.infer_lit_pat(expr, &expected); self.write_pat_ty(pat, ty); return self.pat_ty_after_adjustment(pat); } Pat::Box { inner } => match self.resolve_boxed_box() { Some(box_adt) => { let (inner_ty, alloc_ty) = match expected.as_adt() { Some((adt, subst)) if adt == box_adt => ( subst.at(Interner, 0).assert_ty_ref(Interner).clone(), subst.as_slice(Interner).get(1).and_then(|a| a.ty(Interner).cloned()), ), _ => (self.result.standard_types.unknown.clone(), None), }; let inner_ty = self.infer_pat(*inner, &inner_ty, default_bm); let mut b = TyBuilder::adt(self.db, box_adt).push(inner_ty); if let Some(alloc_ty) = alloc_ty { b = b.push(alloc_ty); } b.fill_with_defaults(self.db, || self.table.new_type_var()).build() } None => self.err_ty(), }, Pat::ConstBlock(expr) => { self.infer_expr(*expr, &Expectation::has_type(expected.clone())) } Pat::Missing => self.err_ty(), }; // use a new type variable if we got error type here let ty = self.insert_type_vars_shallow(ty); // FIXME: This never check is odd, but required with out we do inference right now if !expected.is_never() && !self.unify(&ty, &expected) { self.result .type_mismatches .insert(pat.into(), TypeMismatch { expected, actual: ty.clone() }); } self.write_pat_ty(pat, ty); self.pat_ty_after_adjustment(pat) } fn pat_ty_after_adjustment(&self, pat: PatId) -> Ty { self.result .pat_adjustments .get(&pat) .and_then(|it| it.first()) .unwrap_or(&self.result.type_of_pat[pat]) .clone() } fn infer_ref_pat( &mut self, inner_pat: PatId, mutability: Mutability, expected: &Ty, default_bm: BindingMode, ) -> Ty { let expectation = match expected.as_reference() { Some((inner_ty, _lifetime, _exp_mut)) => inner_ty.clone(), None => { let inner_ty = self.table.new_type_var(); let ref_ty = TyKind::Ref(mutability, static_lifetime(), inner_ty.clone()).intern(Interner); // Unification failure will be reported by the caller. self.unify(&ref_ty, expected); inner_ty } }; let subty = self.infer_pat(inner_pat, &expectation, default_bm); TyKind::Ref(mutability, static_lifetime(), subty).intern(Interner) } fn infer_bind_pat( &mut self, pat: PatId, binding: BindingId, default_bm: BindingMode, subpat: Option, expected: &Ty, ) -> Ty { let Binding { mode, .. } = self.body.bindings[binding]; let mode = if mode == BindingAnnotation::Unannotated { default_bm } else { BindingMode::convert(mode) }; self.result.binding_modes.insert(pat, mode); let inner_ty = match subpat { Some(subpat) => self.infer_pat(subpat, &expected, default_bm), None => expected.clone(), }; let inner_ty = self.insert_type_vars_shallow(inner_ty); let bound_ty = match mode { BindingMode::Ref(mutability) => { TyKind::Ref(mutability, static_lifetime(), inner_ty.clone()).intern(Interner) } BindingMode::Move => inner_ty.clone(), }; self.write_pat_ty(pat, inner_ty.clone()); self.write_binding_ty(binding, bound_ty); return inner_ty; } fn infer_slice_pat( &mut self, expected: &Ty, prefix: &[PatId], slice: &Option, suffix: &[PatId], default_bm: BindingMode, ) -> Ty { let elem_ty = match expected.kind(Interner) { TyKind::Array(st, _) | TyKind::Slice(st) => st.clone(), _ => self.err_ty(), }; for &pat_id in prefix.iter().chain(suffix.iter()) { self.infer_pat(pat_id, &elem_ty, default_bm); } if let &Some(slice_pat_id) = slice { let rest_pat_ty = match expected.kind(Interner) { TyKind::Array(_, length) => { let len = try_const_usize(self.db, length); let len = len.and_then(|len| len.checked_sub((prefix.len() + suffix.len()) as u128)); TyKind::Array(elem_ty.clone(), usize_const(self.db, len, self.resolver.krate())) } _ => TyKind::Slice(elem_ty.clone()), } .intern(Interner); self.infer_pat(slice_pat_id, &rest_pat_ty, default_bm); } match expected.kind(Interner) { TyKind::Array(_, const_) => TyKind::Array(elem_ty, const_.clone()), _ => TyKind::Slice(elem_ty), } .intern(Interner) } fn infer_lit_pat(&mut self, expr: ExprId, expected: &Ty) -> Ty { // Like slice patterns, byte string patterns can denote both `&[u8; N]` and `&[u8]`. if let Expr::Literal(Literal::ByteString(_)) = self.body[expr] { if let Some((inner, ..)) = expected.as_reference() { let inner = self.resolve_ty_shallow(inner); if matches!(inner.kind(Interner), TyKind::Slice(_)) { let elem_ty = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(Interner); let slice_ty = TyKind::Slice(elem_ty).intern(Interner); let ty = TyKind::Ref(Mutability::Not, static_lifetime(), slice_ty).intern(Interner); self.write_expr_ty(expr, ty.clone()); return ty; } } } self.infer_expr(expr, &Expectation::has_type(expected.clone())) } fn is_non_ref_pat(&mut self, body: &hir_def::body::Body, pat: PatId) -> bool { match &body[pat] { Pat::Tuple { .. } | Pat::TupleStruct { .. } | Pat::Record { .. } | Pat::Range { .. } | Pat::Slice { .. } => true, Pat::Or(pats) => pats.iter().all(|p| self.is_non_ref_pat(body, *p)), Pat::Path(p) => { let v = self.resolve_value_path_inner(p, pat.into()); v.is_some_and(|x| !matches!(x.0, hir_def::resolver::ValueNs::ConstId(_))) } Pat::ConstBlock(..) => false, Pat::Lit(expr) => !matches!( body[*expr], Expr::Literal(Literal::String(..) | Literal::CString(..) | Literal::ByteString(..)) ), Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Box { .. } | Pat::Missing => { false } } } } pub(super) fn contains_explicit_ref_binding(body: &Body, pat_id: PatId) -> bool { let mut res = false; body.walk_pats(pat_id, &mut |pat| { res |= matches!(body[pat], Pat::Bind { id, .. } if body.bindings[id].mode == BindingAnnotation::Ref); }); res }