//! The core of the module-level name resolution algorithm. //! //! `DefCollector::collect` contains the fixed-point iteration loop which //! resolves imports and expands macros. use hir_expand::{ builtin_derive::find_builtin_derive, builtin_macro::find_builtin_macro, name::{name, AsName, Name}, HirFileId, MacroCallId, MacroCallKind, MacroDefId, MacroDefKind, }; use ra_cfg::CfgOptions; use ra_db::{CrateId, FileId}; use ra_syntax::ast; use rustc_hash::FxHashMap; use test_utils::tested_by; use crate::{ attr::Attrs, db::DefDatabase, nameres::{ diagnostics::DefDiagnostic, mod_resolution::ModDir, path_resolution::ReachedFixedPoint, raw, BuiltinShadowMode, CrateDefMap, ModuleData, ModuleOrigin, ResolveMode, }, path::{ModPath, PathKind}, per_ns::PerNs, visibility::ResolvedVisibility, AdtId, AstId, ConstLoc, ContainerId, EnumLoc, EnumVariantId, FunctionLoc, ImplLoc, Intern, LocalModuleId, ModuleDefId, ModuleId, StaticLoc, StructLoc, TraitLoc, TypeAliasLoc, UnionLoc, }; pub(super) fn collect_defs(db: &impl DefDatabase, mut def_map: CrateDefMap) -> CrateDefMap { let crate_graph = db.crate_graph(); // populate external prelude for dep in crate_graph.dependencies(def_map.krate) { let dep_def_map = db.crate_def_map(dep.crate_id); log::debug!("crate dep {:?} -> {:?}", dep.name, dep.crate_id); def_map.extern_prelude.insert( dep.as_name(), ModuleId { krate: dep.crate_id, local_id: dep_def_map.root }.into(), ); // look for the prelude // If the dependency defines a prelude, we overwrite an already defined // prelude. This is necessary to import the "std" prelude if a crate // depends on both "core" and "std". let dep_def_map = db.crate_def_map(dep.crate_id); if dep_def_map.prelude.is_some() { def_map.prelude = dep_def_map.prelude; } } let cfg_options = crate_graph.cfg_options(def_map.krate); let mut collector = DefCollector { db, def_map, glob_imports: FxHashMap::default(), unresolved_imports: Vec::new(), resolved_imports: Vec::new(), unexpanded_macros: Vec::new(), unexpanded_attribute_macros: Vec::new(), mod_dirs: FxHashMap::default(), cfg_options, }; collector.collect(); collector.finish() } #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum PartialResolvedImport { /// None of any namespaces is resolved Unresolved, /// One of namespaces is resolved Indeterminate(PerNs), /// All namespaces are resolved, OR it is came from other crate Resolved(PerNs), } impl PartialResolvedImport { fn namespaces(&self) -> PerNs { match self { PartialResolvedImport::Unresolved => PerNs::none(), PartialResolvedImport::Indeterminate(ns) => *ns, PartialResolvedImport::Resolved(ns) => *ns, } } } #[derive(Clone, Debug, Eq, PartialEq)] struct ImportDirective { module_id: LocalModuleId, import_id: raw::Import, import: raw::ImportData, status: PartialResolvedImport, } #[derive(Clone, Debug, Eq, PartialEq)] struct MacroDirective { module_id: LocalModuleId, ast_id: AstId, path: ModPath, legacy: Option, } /// Walks the tree of module recursively struct DefCollector<'a, DB> { db: &'a DB, def_map: CrateDefMap, glob_imports: FxHashMap>, unresolved_imports: Vec, resolved_imports: Vec, unexpanded_macros: Vec, unexpanded_attribute_macros: Vec<(LocalModuleId, AstId, ModPath)>, mod_dirs: FxHashMap, cfg_options: &'a CfgOptions, } impl DefCollector<'_, DB> where DB: DefDatabase, { fn collect(&mut self) { let crate_graph = self.db.crate_graph(); let file_id = crate_graph.crate_root(self.def_map.krate); let raw_items = self.db.raw_items(file_id.into()); let module_id = self.def_map.root; self.def_map.modules[module_id].origin = ModuleOrigin::CrateRoot { definition: file_id }; ModCollector { def_collector: &mut *self, module_id, file_id: file_id.into(), raw_items: &raw_items, mod_dir: ModDir::root(), } .collect(raw_items.items()); // main name resolution fixed-point loop. let mut i = 0; loop { self.db.check_canceled(); self.resolve_imports(); match self.resolve_macros() { ReachedFixedPoint::Yes => break, ReachedFixedPoint::No => i += 1, } if i == 1000 { log::error!("name resolution is stuck"); break; } } // Resolve all indeterminate resolved imports again // As some of the macros will expand newly import shadowing partial resolved imports // FIXME: We maybe could skip this, if we handle the Indetermine imports in `resolve_imports` // correctly let partial_resolved = self.resolved_imports.iter().filter_map(|directive| { if let PartialResolvedImport::Indeterminate(_) = directive.status { let mut directive = directive.clone(); directive.status = PartialResolvedImport::Unresolved; Some(directive) } else { None } }); self.unresolved_imports.extend(partial_resolved); self.resolve_imports(); let unresolved_imports = std::mem::replace(&mut self.unresolved_imports, Vec::new()); // show unresolved imports in completion, etc for directive in unresolved_imports { self.record_resolved_import(&directive) } } /// Define a macro with `macro_rules`. /// /// It will define the macro in legacy textual scope, and if it has `#[macro_export]`, /// then it is also defined in the root module scope. /// You can `use` or invoke it by `crate::macro_name` anywhere, before or after the definition. /// /// It is surprising that the macro will never be in the current module scope. /// These code fails with "unresolved import/macro", /// ```rust,compile_fail /// mod m { macro_rules! foo { () => {} } } /// use m::foo as bar; /// ``` /// /// ```rust,compile_fail /// macro_rules! foo { () => {} } /// self::foo!(); /// crate::foo!(); /// ``` /// /// Well, this code compiles, because the plain path `foo` in `use` is searched /// in the legacy textual scope only. /// ```rust /// macro_rules! foo { () => {} } /// use foo as bar; /// ``` fn define_macro( &mut self, module_id: LocalModuleId, name: Name, macro_: MacroDefId, export: bool, ) { // Textual scoping self.define_legacy_macro(module_id, name.clone(), macro_); // Module scoping // In Rust, `#[macro_export]` macros are unconditionally visible at the // crate root, even if the parent modules is **not** visible. if export { self.update( self.def_map.root, &[(name, PerNs::macros(macro_, ResolvedVisibility::Public))], ); } } /// Define a legacy textual scoped macro in module /// /// We use a map `legacy_macros` to store all legacy textual scoped macros visible per module. /// It will clone all macros from parent legacy scope, whose definition is prior to /// the definition of current module. /// And also, `macro_use` on a module will import all legacy macros visible inside to /// current legacy scope, with possible shadowing. fn define_legacy_macro(&mut self, module_id: LocalModuleId, name: Name, mac: MacroDefId) { // Always shadowing self.def_map.modules[module_id].scope.define_legacy_macro(name, mac); } /// Import macros from `#[macro_use] extern crate`. fn import_macros_from_extern_crate( &mut self, current_module_id: LocalModuleId, import: &raw::ImportData, ) { log::debug!( "importing macros from extern crate: {:?} ({:?})", import, self.def_map.edition, ); let res = self.def_map.resolve_name_in_extern_prelude( &import .path .as_ident() .expect("extern crate should have been desugared to one-element path"), ); if let Some(ModuleDefId::ModuleId(m)) = res.take_types() { tested_by!(macro_rules_from_other_crates_are_visible_with_macro_use); self.import_all_macros_exported(current_module_id, m.krate); } } /// Import all exported macros from another crate /// /// Exported macros are just all macros in the root module scope. /// Note that it contains not only all `#[macro_export]` macros, but also all aliases /// created by `use` in the root module, ignoring the visibility of `use`. fn import_all_macros_exported(&mut self, current_module_id: LocalModuleId, krate: CrateId) { let def_map = self.db.crate_def_map(krate); for (name, def) in def_map[def_map.root].scope.macros() { // `macro_use` only bring things into legacy scope. self.define_legacy_macro(current_module_id, name.clone(), def); } } /// Import resolution /// /// This is a fix point algorithm. We resolve imports until no forward /// progress in resolving imports is made fn resolve_imports(&mut self) { let mut n_previous_unresolved = self.unresolved_imports.len() + 1; while self.unresolved_imports.len() < n_previous_unresolved { n_previous_unresolved = self.unresolved_imports.len(); let imports = std::mem::replace(&mut self.unresolved_imports, Vec::new()); for mut directive in imports { directive.status = self.resolve_import(directive.module_id, &directive.import); match directive.status { PartialResolvedImport::Indeterminate(_) => { self.record_resolved_import(&directive); // FIXME: For avoid performance regression, // we consider an imported resolved if it is indeterminate (i.e not all namespace resolved) self.resolved_imports.push(directive) } PartialResolvedImport::Resolved(_) => { self.record_resolved_import(&directive); self.resolved_imports.push(directive) } PartialResolvedImport::Unresolved => { self.unresolved_imports.push(directive); } } } } } fn resolve_import( &self, module_id: LocalModuleId, import: &raw::ImportData, ) -> PartialResolvedImport { log::debug!("resolving import: {:?} ({:?})", import, self.def_map.edition); if import.is_extern_crate { let res = self.def_map.resolve_name_in_extern_prelude( &import .path .as_ident() .expect("extern crate should have been desugared to one-element path"), ); PartialResolvedImport::Resolved(res) } else { let res = self.def_map.resolve_path_fp_with_macro( self.db, ResolveMode::Import, module_id, &import.path, BuiltinShadowMode::Module, ); let def = res.resolved_def; if res.reached_fixedpoint == ReachedFixedPoint::No { return PartialResolvedImport::Unresolved; } if let Some(krate) = res.krate { if krate != self.def_map.krate { return PartialResolvedImport::Resolved(def); } } // Check whether all namespace is resolved if def.take_types().is_some() && def.take_values().is_some() && def.take_macros().is_some() { PartialResolvedImport::Resolved(def) } else { PartialResolvedImport::Indeterminate(def) } } } fn record_resolved_import(&mut self, directive: &ImportDirective) { let module_id = directive.module_id; let import_id = directive.import_id; let import = &directive.import; let def = directive.status.namespaces(); let vis = self .def_map .resolve_visibility(self.db, module_id, &directive.import.visibility) .unwrap_or(ResolvedVisibility::Public); if import.is_glob { log::debug!("glob import: {:?}", import); match def.take_types() { Some(ModuleDefId::ModuleId(m)) => { if import.is_prelude { tested_by!(std_prelude); self.def_map.prelude = Some(m); } else if m.krate != self.def_map.krate { tested_by!(glob_across_crates); // glob import from other crate => we can just import everything once let item_map = self.db.crate_def_map(m.krate); let scope = &item_map[m.local_id].scope; // TODO: only use names we can see // Module scoped macros is included let items = scope.collect_resolutions_with_vis(vis); self.update(module_id, &items); } else { // glob import from same crate => we do an initial // import, and then need to propagate any further // additions let scope = &self.def_map[m.local_id].scope; // TODO: only use names we can see // Module scoped macros is included let items = scope.collect_resolutions_with_vis(vis); self.update(module_id, &items); // record the glob import in case we add further items let glob = self.glob_imports.entry(m.local_id).or_default(); if !glob.iter().any(|it| *it == (module_id, import_id)) { glob.push((module_id, import_id)); } } } Some(ModuleDefId::AdtId(AdtId::EnumId(e))) => { tested_by!(glob_enum); // glob import from enum => just import all the variants let enum_data = self.db.enum_data(e); let resolutions = enum_data .variants .iter() .map(|(local_id, variant_data)| { let name = variant_data.name.clone(); let variant = EnumVariantId { parent: e, local_id }; let res = PerNs::both(variant.into(), variant.into(), vis); (name, res) }) .collect::>(); self.update(module_id, &resolutions); } Some(d) => { log::debug!("glob import {:?} from non-module/enum {:?}", import, d); } None => { log::debug!("glob import {:?} didn't resolve as type", import); } } } else { match import.path.segments.last() { Some(last_segment) => { let name = import.alias.clone().unwrap_or_else(|| last_segment.clone()); log::debug!("resolved import {:?} ({:?}) to {:?}", name, import, def); // extern crates in the crate root are special-cased to insert entries into the extern prelude: rust-lang/rust#54658 if import.is_extern_crate && module_id == self.def_map.root { if let Some(def) = def.take_types() { self.def_map.extern_prelude.insert(name.clone(), def); } } self.update(module_id, &[(name, def.with_visibility(vis))]); } None => tested_by!(bogus_paths), } } } fn update(&mut self, module_id: LocalModuleId, resolutions: &[(Name, PerNs)]) { self.update_recursive(module_id, resolutions, 0) } fn update_recursive( &mut self, module_id: LocalModuleId, resolutions: &[(Name, PerNs)], depth: usize, ) { if depth > 100 { // prevent stack overflows (but this shouldn't be possible) panic!("infinite recursion in glob imports!"); } let scope = &mut self.def_map.modules[module_id].scope; let mut changed = false; for (name, res) in resolutions { changed |= scope.push_res(name.clone(), *res); } if !changed { return; } let glob_imports = self .glob_imports .get(&module_id) .into_iter() .flat_map(|v| v.iter()) .cloned() .collect::>(); for (glob_importing_module, _glob_import) in glob_imports { // We pass the glob import so that the tracked import in those modules is that glob import self.update_recursive(glob_importing_module, resolutions, depth + 1); } } fn resolve_macros(&mut self) -> ReachedFixedPoint { let mut macros = std::mem::replace(&mut self.unexpanded_macros, Vec::new()); let mut attribute_macros = std::mem::replace(&mut self.unexpanded_attribute_macros, Vec::new()); let mut resolved = Vec::new(); let mut res = ReachedFixedPoint::Yes; macros.retain(|directive| { if let Some(call_id) = directive.legacy { res = ReachedFixedPoint::No; resolved.push((directive.module_id, call_id)); return false; } let resolved_res = self.def_map.resolve_path_fp_with_macro( self.db, ResolveMode::Other, directive.module_id, &directive.path, BuiltinShadowMode::Module, ); if let Some(def) = resolved_res.resolved_def.take_macros() { let call_id = def.as_call_id(self.db, MacroCallKind::FnLike(directive.ast_id)); resolved.push((directive.module_id, call_id)); res = ReachedFixedPoint::No; return false; } true }); attribute_macros.retain(|(module_id, ast_id, path)| { let resolved_res = self.resolve_attribute_macro(path); if let Some(def) = resolved_res { let call_id = def.as_call_id(self.db, MacroCallKind::Attr(*ast_id)); resolved.push((*module_id, call_id)); res = ReachedFixedPoint::No; return false; } true }); self.unexpanded_macros = macros; self.unexpanded_attribute_macros = attribute_macros; for (module_id, macro_call_id) in resolved { self.collect_macro_expansion(module_id, macro_call_id); } res } fn resolve_attribute_macro(&self, path: &ModPath) -> Option { // FIXME this is currently super hacky, just enough to support the // built-in derives if let Some(name) = path.as_ident() { // FIXME this should actually be handled with the normal name // resolution; the std lib defines built-in stubs for the derives, // but these are new-style `macro`s, which we don't support yet if let Some(def_id) = find_builtin_derive(name) { return Some(def_id); } } None } fn collect_macro_expansion(&mut self, module_id: LocalModuleId, macro_call_id: MacroCallId) { let file_id: HirFileId = macro_call_id.as_file(); let raw_items = self.db.raw_items(file_id); let mod_dir = self.mod_dirs[&module_id].clone(); ModCollector { def_collector: &mut *self, file_id, module_id, raw_items: &raw_items, mod_dir, } .collect(raw_items.items()); } fn finish(self) -> CrateDefMap { self.def_map } } /// Walks a single module, populating defs, imports and macros struct ModCollector<'a, D> { def_collector: D, module_id: LocalModuleId, file_id: HirFileId, raw_items: &'a raw::RawItems, mod_dir: ModDir, } impl ModCollector<'_, &'_ mut DefCollector<'_, DB>> where DB: DefDatabase, { fn collect(&mut self, items: &[raw::RawItem]) { // Note: don't assert that inserted value is fresh: it's simply not true // for macros. self.def_collector.mod_dirs.insert(self.module_id, self.mod_dir.clone()); // Prelude module is always considered to be `#[macro_use]`. if let Some(prelude_module) = self.def_collector.def_map.prelude { if prelude_module.krate != self.def_collector.def_map.krate { tested_by!(prelude_is_macro_use); self.def_collector.import_all_macros_exported(self.module_id, prelude_module.krate); } } // This should be processed eagerly instead of deferred to resolving. // `#[macro_use] extern crate` is hoisted to imports macros before collecting // any other items. for item in items { if self.is_cfg_enabled(&item.attrs) { if let raw::RawItemKind::Import(import_id) = item.kind { let import = self.raw_items[import_id].clone(); if import.is_extern_crate && import.is_macro_use { self.def_collector.import_macros_from_extern_crate(self.module_id, &import); } } } } for item in items { if self.is_cfg_enabled(&item.attrs) { match item.kind { raw::RawItemKind::Module(m) => { self.collect_module(&self.raw_items[m], &item.attrs) } raw::RawItemKind::Import(import_id) => { self.def_collector.unresolved_imports.push(ImportDirective { module_id: self.module_id, import_id, import: self.raw_items[import_id].clone(), status: PartialResolvedImport::Unresolved, }) } raw::RawItemKind::Def(def) => { self.define_def(&self.raw_items[def], &item.attrs) } raw::RawItemKind::Macro(mac) => self.collect_macro(&self.raw_items[mac]), raw::RawItemKind::Impl(imp) => { let module = ModuleId { krate: self.def_collector.def_map.krate, local_id: self.module_id, }; let container = ContainerId::ModuleId(module); let ast_id = self.raw_items[imp].ast_id; let impl_id = ImplLoc { container, ast_id: AstId::new(self.file_id, ast_id) } .intern(self.def_collector.db); self.def_collector.def_map.modules[self.module_id] .scope .define_impl(impl_id) } } } } } fn collect_module(&mut self, module: &raw::ModuleData, attrs: &Attrs) { let path_attr = attrs.by_key("path").string_value(); let is_macro_use = attrs.by_key("macro_use").exists(); match module { // inline module, just recurse raw::ModuleData::Definition { name, items, ast_id } => { let module_id = self.push_child_module(name.clone(), AstId::new(self.file_id, *ast_id), None); ModCollector { def_collector: &mut *self.def_collector, module_id, file_id: self.file_id, raw_items: self.raw_items, mod_dir: self.mod_dir.descend_into_definition(name, path_attr), } .collect(&*items); if is_macro_use { self.import_all_legacy_macros(module_id); } } // out of line module, resolve, parse and recurse raw::ModuleData::Declaration { name, ast_id } => { let ast_id = AstId::new(self.file_id, *ast_id); match self.mod_dir.resolve_declaration( self.def_collector.db, self.file_id, name, path_attr, ) { Ok((file_id, mod_dir)) => { let module_id = self.push_child_module(name.clone(), ast_id, Some(file_id)); let raw_items = self.def_collector.db.raw_items(file_id.into()); ModCollector { def_collector: &mut *self.def_collector, module_id, file_id: file_id.into(), raw_items: &raw_items, mod_dir, } .collect(raw_items.items()); if is_macro_use { self.import_all_legacy_macros(module_id); } } Err(candidate) => self.def_collector.def_map.diagnostics.push( DefDiagnostic::UnresolvedModule { module: self.module_id, declaration: ast_id, candidate, }, ), }; } } } fn push_child_module( &mut self, name: Name, declaration: AstId, definition: Option, ) -> LocalModuleId { let modules = &mut self.def_collector.def_map.modules; let res = modules.alloc(ModuleData::default()); modules[res].parent = Some(self.module_id); modules[res].origin = ModuleOrigin::not_sure_file(definition, declaration); for (name, mac) in modules[self.module_id].scope.collect_legacy_macros() { modules[res].scope.define_legacy_macro(name, mac) } modules[self.module_id].children.insert(name.clone(), res); let module = ModuleId { krate: self.def_collector.def_map.krate, local_id: res }; let def: ModuleDefId = module.into(); let vis = ResolvedVisibility::Public; // TODO handle module visibility self.def_collector.def_map.modules[self.module_id].scope.define_def(def); self.def_collector.update(self.module_id, &[(name, PerNs::from_def(def, vis))]); res } fn define_def(&mut self, def: &raw::DefData, attrs: &Attrs) { let module = ModuleId { krate: self.def_collector.def_map.krate, local_id: self.module_id }; // FIXME: check attrs to see if this is an attribute macro invocation; // in which case we don't add the invocation, just a single attribute // macro invocation self.collect_derives(attrs, def); let name = def.name.clone(); let container = ContainerId::ModuleId(module); let vis = &def.visibility; let def: ModuleDefId = match def.kind { raw::DefKind::Function(ast_id) => FunctionLoc { container: container.into(), ast_id: AstId::new(self.file_id, ast_id), } .intern(self.def_collector.db) .into(), raw::DefKind::Struct(ast_id) => { StructLoc { container, ast_id: AstId::new(self.file_id, ast_id) } .intern(self.def_collector.db) .into() } raw::DefKind::Union(ast_id) => { UnionLoc { container, ast_id: AstId::new(self.file_id, ast_id) } .intern(self.def_collector.db) .into() } raw::DefKind::Enum(ast_id) => { EnumLoc { container, ast_id: AstId::new(self.file_id, ast_id) } .intern(self.def_collector.db) .into() } raw::DefKind::Const(ast_id) => { ConstLoc { container: container.into(), ast_id: AstId::new(self.file_id, ast_id) } .intern(self.def_collector.db) .into() } raw::DefKind::Static(ast_id) => { StaticLoc { container, ast_id: AstId::new(self.file_id, ast_id) } .intern(self.def_collector.db) .into() } raw::DefKind::Trait(ast_id) => { TraitLoc { container, ast_id: AstId::new(self.file_id, ast_id) } .intern(self.def_collector.db) .into() } raw::DefKind::TypeAlias(ast_id) => TypeAliasLoc { container: container.into(), ast_id: AstId::new(self.file_id, ast_id), } .intern(self.def_collector.db) .into(), }; self.def_collector.def_map.modules[self.module_id].scope.define_def(def); let vis = self .def_collector .def_map .resolve_visibility(self.def_collector.db, self.module_id, vis) .unwrap_or(ResolvedVisibility::Public); self.def_collector.update(self.module_id, &[(name, PerNs::from_def(def, vis))]) } fn collect_derives(&mut self, attrs: &Attrs, def: &raw::DefData) { for derive_subtree in attrs.by_key("derive").tt_values() { // for #[derive(Copy, Clone)], `derive_subtree` is the `(Copy, Clone)` subtree for tt in &derive_subtree.token_trees { let ident = match &tt { tt::TokenTree::Leaf(tt::Leaf::Ident(ident)) => ident, tt::TokenTree::Leaf(tt::Leaf::Punct(_)) => continue, // , is ok _ => continue, // anything else would be an error (which we currently ignore) }; let path = ModPath::from_tt_ident(ident); let ast_id = AstId::new(self.file_id, def.kind.ast_id()); self.def_collector.unexpanded_attribute_macros.push((self.module_id, ast_id, path)); } } } fn collect_macro(&mut self, mac: &raw::MacroData) { let ast_id = AstId::new(self.file_id, mac.ast_id); // Case 0: builtin macros if mac.builtin { if let Some(name) = &mac.name { let krate = self.def_collector.def_map.krate; if let Some(macro_id) = find_builtin_macro(name, krate, ast_id) { self.def_collector.define_macro( self.module_id, name.clone(), macro_id, mac.export, ); return; } } } // Case 1: macro rules, define a macro in crate-global mutable scope if is_macro_rules(&mac.path) { if let Some(name) = &mac.name { let macro_id = MacroDefId { ast_id: Some(ast_id), krate: Some(self.def_collector.def_map.krate), kind: MacroDefKind::Declarative, }; self.def_collector.define_macro(self.module_id, name.clone(), macro_id, mac.export); } return; } // Case 2: try to resolve in legacy scope and expand macro_rules if let Some(macro_def) = mac.path.as_ident().and_then(|name| { self.def_collector.def_map[self.module_id].scope.get_legacy_macro(&name) }) { let macro_call_id = macro_def.as_call_id(self.def_collector.db, MacroCallKind::FnLike(ast_id)); self.def_collector.unexpanded_macros.push(MacroDirective { module_id: self.module_id, path: mac.path.clone(), ast_id, legacy: Some(macro_call_id), }); return; } // Case 3: resolve in module scope, expand during name resolution. // We rewrite simple path `macro_name` to `self::macro_name` to force resolve in module scope only. let mut path = mac.path.clone(); if path.is_ident() { path.kind = PathKind::Super(0); } self.def_collector.unexpanded_macros.push(MacroDirective { module_id: self.module_id, path, ast_id, legacy: None, }); } fn import_all_legacy_macros(&mut self, module_id: LocalModuleId) { let macros = self.def_collector.def_map[module_id].scope.collect_legacy_macros(); for (name, macro_) in macros { self.def_collector.define_legacy_macro(self.module_id, name.clone(), macro_); } } fn is_cfg_enabled(&self, attrs: &Attrs) -> bool { // FIXME: handle cfg_attr :-) attrs .by_key("cfg") .tt_values() .all(|tt| self.def_collector.cfg_options.is_cfg_enabled(tt) != Some(false)) } } fn is_macro_rules(path: &ModPath) -> bool { path.as_ident() == Some(&name![macro_rules]) } #[cfg(test)] mod tests { use crate::{db::DefDatabase, test_db::TestDB}; use ra_arena::Arena; use ra_db::{fixture::WithFixture, SourceDatabase}; use super::*; fn do_collect_defs(db: &impl DefDatabase, def_map: CrateDefMap) -> CrateDefMap { let mut collector = DefCollector { db, def_map, glob_imports: FxHashMap::default(), unresolved_imports: Vec::new(), resolved_imports: Vec::new(), unexpanded_macros: Vec::new(), unexpanded_attribute_macros: Vec::new(), mod_dirs: FxHashMap::default(), cfg_options: &CfgOptions::default(), }; collector.collect(); collector.def_map } fn do_resolve(code: &str) -> CrateDefMap { let (db, _file_id) = TestDB::with_single_file(&code); let krate = db.test_crate(); let def_map = { let edition = db.crate_graph().edition(krate); let mut modules: Arena = Arena::default(); let root = modules.alloc(ModuleData::default()); CrateDefMap { krate, edition, extern_prelude: FxHashMap::default(), prelude: None, root, modules, diagnostics: Vec::new(), } }; do_collect_defs(&db, def_map) } #[test] fn test_macro_expand_will_stop() { do_resolve( r#" macro_rules! foo { ($($ty:ty)*) => { foo!($($ty)*, $($ty)*); } } foo!(KABOOM); "#, ); } }