//! Type inference, i.e. the process of walking through the code and determining //! the type of each expression and pattern. //! //! For type inference, compare the implementations in rustc (the various //! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and //! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for //! inference here is the `infer` function, which infers the types of all //! expressions in a given function. //! //! During inference, types (i.e. the `Ty` struct) can contain type 'variables' //! which represent currently unknown types; as we walk through the expressions, //! we might determine that certain variables need to be equal to each other, or //! to certain types. To record this, we use the union-find implementation from //! the `ena` crate, which is extracted from rustc. use std::borrow::Cow; use std::iter::repeat; use std::ops::Index; use std::sync::Arc; use std::mem; use ena::unify::{InPlaceUnificationTable, UnifyKey, UnifyValue, NoError}; use ra_arena::map::ArenaMap; use rustc_hash::FxHashMap; use test_utils::tested_by; use crate::{ Function, StructField, Path, Name, FnSignature, AdtDef, HirDatabase, ImplItem, type_ref::{TypeRef, Mutability}, expr::{Body, Expr, BindingAnnotation, Literal, ExprId, Pat, PatId, UnaryOp, BinaryOp, Statement, FieldPat, self}, generics::GenericParams, path::{GenericArgs, GenericArg}, adt::VariantDef, resolve::{Resolver, Resolution}, nameres::Namespace }; use super::{Ty, TypableDef, Substs, primitive, op, FnSig, ApplicationTy, TypeName}; /// The entry point of type inference. pub fn infer(db: &impl HirDatabase, func: Function) -> Arc { db.check_canceled(); let body = func.body(db); let resolver = func.resolver(db); let mut ctx = InferenceContext::new(db, body, resolver); let signature = func.signature(db); ctx.collect_fn_signature(&signature); ctx.infer_body(); Arc::new(ctx.resolve_all()) } #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)] enum ExprOrPatId { ExprId(ExprId), PatId(PatId), } impl_froms!(ExprOrPatId: ExprId, PatId); /// Binding modes inferred for patterns. /// https://doc.rust-lang.org/reference/patterns.html#binding-modes #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum BindingMode { Move, Ref(Mutability), } impl BindingMode { pub fn convert(annotation: &BindingAnnotation) -> BindingMode { match annotation { BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move, BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared), BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut), } } } impl Default for BindingMode { fn default() -> Self { BindingMode::Move } } /// The result of type inference: A mapping from expressions and patterns to types. #[derive(Clone, PartialEq, Eq, Debug)] pub struct InferenceResult { /// For each method call expr, records the function it resolves to. method_resolutions: FxHashMap, /// For each field access expr, records the field it resolves to. field_resolutions: FxHashMap, /// For each associated item record what it resolves to assoc_resolutions: FxHashMap, pub(super) type_of_expr: ArenaMap, pub(super) type_of_pat: ArenaMap, } impl InferenceResult { pub fn method_resolution(&self, expr: ExprId) -> Option { self.method_resolutions.get(&expr).map(|it| *it) } pub fn field_resolution(&self, expr: ExprId) -> Option { self.field_resolutions.get(&expr).map(|it| *it) } pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option { self.assoc_resolutions.get(&id.into()).map(|it| *it) } pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option { self.assoc_resolutions.get(&id.into()).map(|it| *it) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, expr: ExprId) -> &Ty { self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, pat: PatId) -> &Ty { self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown) } } /// The inference context contains all information needed during type inference. #[derive(Clone, Debug)] struct InferenceContext<'a, D: HirDatabase> { db: &'a D, body: Arc, resolver: Resolver, var_unification_table: InPlaceUnificationTable, method_resolutions: FxHashMap, field_resolutions: FxHashMap, assoc_resolutions: FxHashMap, type_of_expr: ArenaMap, type_of_pat: ArenaMap, /// The return type of the function being inferred. return_ty: Ty, } impl<'a, D: HirDatabase> InferenceContext<'a, D> { fn new(db: &'a D, body: Arc, resolver: Resolver) -> Self { InferenceContext { method_resolutions: FxHashMap::default(), field_resolutions: FxHashMap::default(), assoc_resolutions: FxHashMap::default(), type_of_expr: ArenaMap::default(), type_of_pat: ArenaMap::default(), var_unification_table: InPlaceUnificationTable::new(), return_ty: Ty::Unknown, // set in collect_fn_signature db, body, resolver, } } fn resolve_all(mut self) -> InferenceResult { let mut tv_stack = Vec::new(); let mut expr_types = mem::replace(&mut self.type_of_expr, ArenaMap::default()); for ty in expr_types.values_mut() { let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown)); *ty = resolved; } let mut pat_types = mem::replace(&mut self.type_of_pat, ArenaMap::default()); for ty in pat_types.values_mut() { let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown)); *ty = resolved; } InferenceResult { method_resolutions: self.method_resolutions, field_resolutions: self.field_resolutions, assoc_resolutions: self.assoc_resolutions, type_of_expr: expr_types, type_of_pat: pat_types, } } fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) { self.type_of_expr.insert(expr, ty); } fn write_method_resolution(&mut self, expr: ExprId, func: Function) { self.method_resolutions.insert(expr, func); } fn write_field_resolution(&mut self, expr: ExprId, field: StructField) { self.field_resolutions.insert(expr, field); } fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: ImplItem) { self.assoc_resolutions.insert(id, item); } fn write_pat_ty(&mut self, pat: PatId, ty: Ty) { self.type_of_pat.insert(pat, ty); } fn make_ty(&mut self, type_ref: &TypeRef) -> Ty { let ty = Ty::from_hir( self.db, // TODO use right resolver for block &self.resolver, type_ref, ); let ty = self.insert_type_vars(ty); ty } fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool { substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth)) } fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool { self.unify_inner(ty1, ty2, 0) } fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool { if depth > 1000 { // prevent stackoverflows panic!("infinite recursion in unification"); } if ty1 == ty2 { return true; } // try to resolve type vars first let ty1 = self.resolve_ty_shallow(ty1); let ty2 = self.resolve_ty_shallow(ty2); match (&*ty1, &*ty2) { (Ty::Unknown, ..) => true, (.., Ty::Unknown) => true, (Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.name == a_ty2.name => { self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1) } (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2))) | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2))) | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) => { // both type vars are unknown since we tried to resolve them self.var_unification_table.union(*tv1, *tv2); true } (Ty::Infer(InferTy::TypeVar(tv)), other) | (other, Ty::Infer(InferTy::TypeVar(tv))) | (Ty::Infer(InferTy::IntVar(tv)), other) | (other, Ty::Infer(InferTy::IntVar(tv))) | (Ty::Infer(InferTy::FloatVar(tv)), other) | (other, Ty::Infer(InferTy::FloatVar(tv))) => { // the type var is unknown since we tried to resolve it self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone())); true } _ => false, } } fn new_type_var(&mut self) -> Ty { Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } fn new_integer_var(&mut self) -> Ty { Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } fn new_float_var(&mut self) -> Ty { Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } /// Replaces Ty::Unknown by a new type var, so we can maybe still infer it. fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty { match ty { Ty::Unknown => self.new_type_var(), Ty::Apply(ApplicationTy { name: TypeName::Int(primitive::UncertainIntTy::Unknown), .. }) => self.new_integer_var(), Ty::Apply(ApplicationTy { name: TypeName::Float(primitive::UncertainFloatTy::Unknown), .. }) => self.new_float_var(), _ => ty, } } fn insert_type_vars(&mut self, ty: Ty) -> Ty { ty.fold(&mut |ty| self.insert_type_vars_shallow(ty)) } /// Resolves the type as far as currently possible, replacing type variables /// by their known types. All types returned by the infer_* functions should /// be resolved as far as possible, i.e. contain no type variables with /// known type. fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); if tv_stack.contains(&inner) { tested_by!(type_var_cycles_resolve_as_possible); // recursive type return tv.fallback_value(); } if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() { // known_ty may contain other variables that are known by now tv_stack.push(inner); let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone()); tv_stack.pop(); result } else { ty } } _ => ty, }) } /// If `ty` is a type variable with known type, returns that type; /// otherwise, return ty. fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> { let mut ty = Cow::Borrowed(ty); // The type variable could resolve to a int/float variable. Hence try // resolving up to three times; each type of variable shouldn't occur // more than once for i in 0..3 { if i > 0 { tested_by!(type_var_resolves_to_int_var); } match &*ty { Ty::Infer(tv) => { let inner = tv.to_inner(); match self.var_unification_table.probe_value(inner).known() { Some(known_ty) => { // The known_ty can't be a type var itself ty = Cow::Owned(known_ty.clone()); } _ => return ty, } } _ => return ty, } } log::error!("Inference variable still not resolved: {:?}", ty); ty } /// Resolves the type completely; type variables without known type are /// replaced by Ty::Unknown. fn resolve_ty_completely(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); if tv_stack.contains(&inner) { tested_by!(type_var_cycles_resolve_completely); // recursive type return tv.fallback_value(); } if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() { // known_ty may contain other variables that are known by now tv_stack.push(inner); let result = self.resolve_ty_completely(tv_stack, known_ty.clone()); tv_stack.pop(); result } else { tv.fallback_value() } } _ => ty, }) } fn infer_path_expr(&mut self, resolver: &Resolver, path: &Path, id: ExprOrPatId) -> Option { let resolved = resolver.resolve_path_segments(self.db, &path); let (def, remaining_index) = resolved.into_inner(); log::debug!( "path {:?} resolved to {:?} with remaining index {:?}", path, def, remaining_index ); // if the remaining_index is None, we expect the path // to be fully resolved, in this case we continue with // the default by attempting to `take_values´ from the resolution. // Otherwise the path was partially resolved, which means // we might have resolved into a type for which // we may find some associated item starting at the // path.segment pointed to by `remaining_index´ let mut resolved = if remaining_index.is_none() { def.take_values()? } else { def.take_types()? }; let remaining_index = remaining_index.unwrap_or(path.segments.len()); // resolve intermediate segments for segment in &path.segments[remaining_index..] { let ty = match resolved { Resolution::Def(def) => { let typable: Option = def.into(); let typable = typable?; let substs = Ty::substs_from_path_segment(self.db, &self.resolver, segment, typable); self.db.type_for_def(typable, Namespace::Types).apply_substs(substs) } Resolution::LocalBinding(_) => { // can't have a local binding in an associated item path return None; } Resolution::GenericParam(..) => { // TODO associated item of generic param return None; } Resolution::SelfType(_) => { // TODO associated item of self type return None; } }; // Attempt to find an impl_item for the type which has a name matching // the current segment log::debug!("looking for path segment: {:?}", segment); let item: crate::ModuleDef = ty.iterate_impl_items(self.db, |item| { let matching_def: Option = match item { crate::ImplItem::Method(func) => { let sig = func.signature(self.db); if segment.name == *sig.name() { Some(func.into()) } else { None } } crate::ImplItem::Const(konst) => { let sig = konst.signature(self.db); if segment.name == *sig.name() { Some(konst.into()) } else { None } } // TODO: Resolve associated types crate::ImplItem::TypeAlias(_) => None, }; match matching_def { Some(_) => { self.write_assoc_resolution(id, item); return matching_def; } None => None, } })?; resolved = Resolution::Def(item.into()); } match resolved { Resolution::Def(def) => { let typable: Option = def.into(); let typable = typable?; let substs = Ty::substs_from_path(self.db, &self.resolver, path, typable); let ty = self.db.type_for_def(typable, Namespace::Values).apply_substs(substs); let ty = self.insert_type_vars(ty); Some(ty) } Resolution::LocalBinding(pat) => { let ty = self.type_of_pat.get(pat)?; let ty = self.resolve_ty_as_possible(&mut vec![], ty.clone()); Some(ty) } Resolution::GenericParam(..) => { // generic params can't refer to values... yet None } Resolution::SelfType(_) => { log::error!("path expr {:?} resolved to Self type in values ns", path); None } } } fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option) { let path = match path { Some(path) => path, None => return (Ty::Unknown, None), }; let resolver = &self.resolver; let typable: Option = match resolver.resolve_path(self.db, &path).take_types() { Some(Resolution::Def(def)) => def.into(), Some(Resolution::LocalBinding(..)) => { // this cannot happen log::error!("path resolved to local binding in type ns"); return (Ty::Unknown, None); } Some(Resolution::GenericParam(..)) => { // generic params can't be used in struct literals return (Ty::Unknown, None); } Some(Resolution::SelfType(..)) => { // TODO this is allowed in an impl for a struct, handle this return (Ty::Unknown, None); } None => return (Ty::Unknown, None), }; let def = match typable { None => return (Ty::Unknown, None), Some(it) => it, }; // TODO remove the duplication between here and `Ty::from_path`? let substs = Ty::substs_from_path(self.db, resolver, path, def); match def { TypableDef::Struct(s) => { let ty = s.ty(self.db); let ty = self.insert_type_vars(ty.apply_substs(substs)); (ty, Some(s.into())) } TypableDef::EnumVariant(var) => { let ty = var.parent_enum(self.db).ty(self.db); let ty = self.insert_type_vars(ty.apply_substs(substs)); (ty, Some(var.into())) } TypableDef::TypeAlias(_) | TypableDef::Function(_) | TypableDef::Enum(_) | TypableDef::Const(_) | TypableDef::Static(_) => (Ty::Unknown, None), } } fn infer_tuple_struct_pat( &mut self, path: Option<&Path>, subpats: &[PatId], expected: &Ty, default_bm: BindingMode, ) -> Ty { let (ty, def) = self.resolve_variant(path); self.unify(&ty, expected); let substs = ty.substs().unwrap_or_else(Substs::empty); for (i, &subpat) in subpats.iter().enumerate() { let expected_ty = def .and_then(|d| d.field(self.db, &Name::tuple_field_name(i))) .map_or(Ty::Unknown, |field| field.ty(self.db)) .subst(&substs); self.infer_pat(subpat, &expected_ty, default_bm); } ty } fn infer_struct_pat( &mut self, path: Option<&Path>, subpats: &[FieldPat], expected: &Ty, default_bm: BindingMode, ) -> Ty { let (ty, def) = self.resolve_variant(path); self.unify(&ty, expected); let substs = ty.substs().unwrap_or_else(Substs::empty); for subpat in subpats { let matching_field = def.and_then(|it| it.field(self.db, &subpat.name)); let expected_ty = matching_field.map_or(Ty::Unknown, |field| field.ty(self.db)).subst(&substs); self.infer_pat(subpat.pat, &expected_ty, default_bm); } ty } fn infer_pat(&mut self, pat: PatId, mut expected: &Ty, mut default_bm: BindingMode) -> Ty { let body = Arc::clone(&self.body); // avoid borrow checker problem let is_non_ref_pat = match &body[pat] { Pat::Tuple(..) | Pat::TupleStruct { .. } | Pat::Struct { .. } | Pat::Range { .. } | Pat::Slice { .. } => true, // TODO: Path/Lit might actually evaluate to ref, but inference is unimplemented. Pat::Path(..) | Pat::Lit(..) => true, Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Missing => false, }; if is_non_ref_pat { while let Some((inner, mutability)) = expected.as_reference() { expected = inner; default_bm = match default_bm { BindingMode::Move => BindingMode::Ref(mutability), BindingMode::Ref(Mutability::Shared) => BindingMode::Ref(Mutability::Shared), BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability), } } } else if let Pat::Ref { .. } = &body[pat] { tested_by!(match_ergonomics_ref); // When you encounter a `&pat` pattern, reset to Move. // This is so that `w` is by value: `let (_, &w) = &(1, &2);` default_bm = BindingMode::Move; } // Lose mutability. let default_bm = default_bm; let expected = expected; let ty = match &body[pat] { Pat::Tuple(ref args) => { let expectations = match expected.as_tuple() { Some(parameters) => &*parameters.0, _ => &[], }; let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown)); let inner_tys = args .iter() .zip(expectations_iter) .map(|(&pat, ty)| self.infer_pat(pat, ty, default_bm)) .collect::>() .into(); Ty::apply(TypeName::Tuple, Substs(inner_tys)) } Pat::Ref { pat, mutability } => { let expectation = match expected.as_reference() { Some((inner_ty, exp_mut)) => { if *mutability != exp_mut { // TODO: emit type error? } inner_ty } _ => &Ty::Unknown, }; let subty = self.infer_pat(*pat, expectation, default_bm); Ty::apply_one(TypeName::Ref(*mutability), subty.into()) } Pat::TupleStruct { path: ref p, args: ref subpats } => { self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm) } Pat::Struct { path: ref p, args: ref fields } => { self.infer_struct_pat(p.as_ref(), fields, expected, default_bm) } Pat::Path(path) => { // TODO use correct resolver for the surrounding expression let resolver = self.resolver.clone(); self.infer_path_expr(&resolver, &path, pat.into()).unwrap_or(Ty::Unknown) } Pat::Bind { mode, name: _name, subpat } => { let mode = if mode == &BindingAnnotation::Unannotated { default_bm } else { BindingMode::convert(mode) }; let inner_ty = if let Some(subpat) = subpat { self.infer_pat(*subpat, expected, default_bm) } else { expected.clone() }; let inner_ty = self.insert_type_vars_shallow(inner_ty); let bound_ty = match mode { BindingMode::Ref(mutability) => { Ty::apply_one(TypeName::Ref(mutability), inner_ty.clone().into()) } BindingMode::Move => inner_ty.clone(), }; let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty); self.write_pat_ty(pat, bound_ty); return inner_ty; } _ => Ty::Unknown, }; // use a new type variable if we got Ty::Unknown here let ty = self.insert_type_vars_shallow(ty); self.unify(&ty, expected); let ty = self.resolve_ty_as_possible(&mut vec![], ty); self.write_pat_ty(pat, ty.clone()); ty } fn substs_for_method_call( &mut self, def_generics: Option>, generic_args: &Option, ) -> Substs { let (parent_param_count, param_count) = def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len())); let mut substs = Vec::with_capacity(parent_param_count + param_count); for _ in 0..parent_param_count { substs.push(Ty::Unknown); } // handle provided type arguments if let Some(generic_args) = generic_args { // if args are provided, it should be all of them, but we can't rely on that for arg in generic_args.args.iter().take(param_count) { match arg { GenericArg::Type(type_ref) => { let ty = self.make_ty(type_ref); substs.push(ty); } } } }; let supplied_params = substs.len(); for _ in supplied_params..parent_param_count + param_count { substs.push(Ty::Unknown); } assert_eq!(substs.len(), parent_param_count + param_count); Substs(substs.into()) } fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty { let body = Arc::clone(&self.body); // avoid borrow checker problem let ty = match &body[tgt_expr] { Expr::Missing => Ty::Unknown, Expr::If { condition, then_branch, else_branch } => { // if let is desugared to match, so this is always simple if self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeName::Bool))); let then_ty = self.infer_expr(*then_branch, expected); match else_branch { Some(else_branch) => { self.infer_expr(*else_branch, expected); } None => { // no else branch -> unit self.unify(&then_ty, &Ty::unit()); // actually coerce } }; then_ty } Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected), Expr::Loop { body } => { self.infer_expr(*body, &Expectation::has_type(Ty::unit())); // TODO handle break with value Ty::simple(TypeName::Never) } Expr::While { condition, body } => { // while let is desugared to a match loop, so this is always simple while self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeName::Bool))); self.infer_expr(*body, &Expectation::has_type(Ty::unit())); Ty::unit() } Expr::For { iterable, body, pat } => { let _iterable_ty = self.infer_expr(*iterable, &Expectation::none()); self.infer_pat(*pat, &Ty::Unknown, BindingMode::default()); self.infer_expr(*body, &Expectation::has_type(Ty::unit())); Ty::unit() } Expr::Lambda { body, args, arg_types } => { assert_eq!(args.len(), arg_types.len()); for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) { let expected = if let Some(type_ref) = arg_type { let ty = self.make_ty(type_ref); ty } else { Ty::Unknown }; self.infer_pat(*arg_pat, &expected, BindingMode::default()); } // TODO: infer lambda type etc. let _body_ty = self.infer_expr(*body, &Expectation::none()); Ty::Unknown } Expr::Call { callee, args } => { let callee_ty = self.infer_expr(*callee, &Expectation::none()); let (param_tys, ret_ty) = match &callee_ty { Ty::Apply(a_ty) => match a_ty.name { TypeName::FnPtr => { let sig = FnSig::from_fn_ptr_substs(&a_ty.parameters); (sig.params().to_vec(), sig.ret().clone()) } TypeName::FnDef(def) => { let sig = self.db.callable_item_signature(def); let ret_ty = sig.ret().clone().subst(&a_ty.parameters); let param_tys = sig .params() .iter() .map(|ty| ty.clone().subst(&a_ty.parameters)) .collect(); (param_tys, ret_ty) } _ => (Vec::new(), Ty::Unknown), }, _ => { // not callable // TODO report an error? (Vec::new(), Ty::Unknown) } }; let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown)); for (arg, param) in args.iter().zip(param_iter) { self.infer_expr(*arg, &Expectation::has_type(param)); } ret_ty } Expr::MethodCall { receiver, args, method_name, generic_args } => { let receiver_ty = self.infer_expr(*receiver, &Expectation::none()); let resolved = receiver_ty.clone().lookup_method(self.db, method_name); let (derefed_receiver_ty, method_ty, def_generics) = match resolved { Some((ty, func)) => { self.write_method_resolution(tgt_expr, func); ( ty, self.db.type_for_def(func.into(), Namespace::Values), Some(func.generic_params(self.db)), ) } None => (Ty::Unknown, receiver_ty, None), }; let substs = self.substs_for_method_call(def_generics, generic_args); let method_ty = method_ty.apply_substs(substs); let method_ty = self.insert_type_vars(method_ty); let (expected_receiver_ty, param_tys, ret_ty) = match &method_ty { Ty::Apply(a_ty) => match a_ty.name { TypeName::FnPtr => { let sig = FnSig::from_fn_ptr_substs(&a_ty.parameters); if !sig.params().is_empty() { ( sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone(), ) } else { (Ty::Unknown, Vec::new(), sig.ret().clone()) } } TypeName::FnDef(def) => { let sig = self.db.callable_item_signature(def); let ret_ty = sig.ret().clone().subst(&a_ty.parameters); if !sig.params().is_empty() { let mut params_iter = sig .params() .iter() .map(|ty| ty.clone().subst(&a_ty.parameters)); let receiver_ty = params_iter.next().unwrap(); (receiver_ty, params_iter.collect(), ret_ty) } else { (Ty::Unknown, Vec::new(), ret_ty) } } _ => (Ty::Unknown, Vec::new(), Ty::Unknown), }, _ => (Ty::Unknown, Vec::new(), Ty::Unknown), }; // Apply autoref so the below unification works correctly let actual_receiver_ty = match expected_receiver_ty.as_reference() { Some((_, mutability)) => { Ty::apply_one(TypeName::Ref(mutability), derefed_receiver_ty) } _ => derefed_receiver_ty, }; self.unify(&expected_receiver_ty, &actual_receiver_ty); let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown)); for (arg, param) in args.iter().zip(param_iter) { self.infer_expr(*arg, &Expectation::has_type(param)); } ret_ty } Expr::Match { expr, arms } => { let expected = if expected.ty == Ty::Unknown { Expectation::has_type(self.new_type_var()) } else { expected.clone() }; let input_ty = self.infer_expr(*expr, &Expectation::none()); for arm in arms { for &pat in &arm.pats { let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default()); } if let Some(guard_expr) = arm.guard { self.infer_expr( guard_expr, &Expectation::has_type(Ty::simple(TypeName::Bool)), ); } self.infer_expr(arm.expr, &expected); } expected.ty } Expr::Path(p) => { // TODO this could be more efficient... let resolver = expr::resolver_for_expr(self.body.clone(), self.db, tgt_expr); self.infer_path_expr(&resolver, p, tgt_expr.into()).unwrap_or(Ty::Unknown) } Expr::Continue => Ty::simple(TypeName::Never), Expr::Break { expr } => { if let Some(expr) = expr { // TODO handle break with value self.infer_expr(*expr, &Expectation::none()); } Ty::simple(TypeName::Never) } Expr::Return { expr } => { if let Some(expr) = expr { self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone())); } Ty::simple(TypeName::Never) } Expr::StructLit { path, fields, spread } => { let (ty, def_id) = self.resolve_variant(path.as_ref()); let substs = ty.substs().unwrap_or_else(Substs::empty); for field in fields { let field_ty = def_id .and_then(|it| it.field(self.db, &field.name)) .map_or(Ty::Unknown, |field| field.ty(self.db)) .subst(&substs); self.infer_expr(field.expr, &Expectation::has_type(field_ty)); } if let Some(expr) = spread { self.infer_expr(*expr, &Expectation::has_type(ty.clone())); } ty } Expr::Field { expr, name } => { let receiver_ty = self.infer_expr(*expr, &Expectation::none()); let ty = receiver_ty .autoderef(self.db) .find_map(|derefed_ty| match derefed_ty { Ty::Apply(a_ty) => match a_ty.name { TypeName::Tuple => { let i = name.to_string().parse::().ok(); i.and_then(|i| a_ty.parameters.0.get(i).cloned()) } TypeName::Adt(AdtDef::Struct(s)) => { s.field(self.db, name).map(|field| { self.write_field_resolution(tgt_expr, field); field.ty(self.db).subst(&a_ty.parameters) }) } _ => None, }, _ => None, }) .unwrap_or(Ty::Unknown); self.insert_type_vars(ty) } Expr::Try { expr } => { let _inner_ty = self.infer_expr(*expr, &Expectation::none()); Ty::Unknown } Expr::Cast { expr, type_ref } => { let _inner_ty = self.infer_expr(*expr, &Expectation::none()); let cast_ty = self.make_ty(type_ref); // TODO check the cast... cast_ty } Expr::Ref { expr, mutability } => { let expectation = if let Some((exp_inner, exp_mutability)) = &expected.ty.as_reference() { if *exp_mutability == Mutability::Mut && *mutability == Mutability::Shared { // TODO: throw type error - expected mut reference but found shared ref, // which cannot be coerced } Expectation::has_type(Ty::clone(exp_inner)) } else { Expectation::none() }; // TODO reference coercions etc. let inner_ty = self.infer_expr(*expr, &expectation); Ty::apply_one(TypeName::Ref(*mutability), inner_ty) } Expr::UnaryOp { expr, op } => { let inner_ty = self.infer_expr(*expr, &Expectation::none()); match op { UnaryOp::Deref => { if let Some(derefed_ty) = inner_ty.builtin_deref() { derefed_ty } else { // TODO Deref::deref Ty::Unknown } } UnaryOp::Neg => { match &inner_ty { Ty::Apply(a_ty) => match a_ty.name { TypeName::Int(primitive::UncertainIntTy::Unknown) | TypeName::Int(primitive::UncertainIntTy::Signed(..)) | TypeName::Float(..) => inner_ty, _ => Ty::Unknown, }, Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => { inner_ty } // TODO: resolve ops::Neg trait _ => Ty::Unknown, } } UnaryOp::Not => { match &inner_ty { Ty::Apply(a_ty) => match a_ty.name { TypeName::Bool | TypeName::Int(_) => inner_ty, _ => Ty::Unknown, }, Ty::Infer(InferTy::IntVar(..)) => inner_ty, // TODO: resolve ops::Not trait for inner_ty _ => Ty::Unknown, } } } } Expr::BinaryOp { lhs, rhs, op } => match op { Some(op) => { let lhs_expectation = match op { BinaryOp::BooleanAnd | BinaryOp::BooleanOr => { Expectation::has_type(Ty::simple(TypeName::Bool)) } _ => Expectation::none(), }; let lhs_ty = self.infer_expr(*lhs, &lhs_expectation); // TODO: find implementation of trait corresponding to operation // symbol and resolve associated `Output` type let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty); let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation)); // TODO: similar as above, return ty is often associated trait type op::binary_op_return_ty(*op, rhs_ty) } _ => Ty::Unknown, }, Expr::Tuple { exprs } => { let mut ty_vec = Vec::with_capacity(exprs.len()); for arg in exprs.iter() { ty_vec.push(self.infer_expr(*arg, &Expectation::none())); } Ty::apply(TypeName::Tuple, Substs(ty_vec.into())) } Expr::Array { exprs } => { let elem_ty = match &expected.ty { Ty::Apply(a_ty) => match a_ty.name { TypeName::Slice | TypeName::Array => { Ty::clone(&a_ty.parameters.as_single()) } _ => self.new_type_var(), }, _ => self.new_type_var(), }; for expr in exprs.iter() { self.infer_expr(*expr, &Expectation::has_type(elem_ty.clone())); } Ty::apply_one(TypeName::Array, elem_ty) } Expr::Literal(lit) => match lit { Literal::Bool(..) => Ty::simple(TypeName::Bool), Literal::String(..) => { Ty::apply_one(TypeName::Ref(Mutability::Shared), Ty::simple(TypeName::Str)) } Literal::ByteString(..) => { let byte_type = Ty::simple(TypeName::Int(primitive::UncertainIntTy::Unsigned( primitive::UintTy::U8, ))); let slice_type = Ty::apply_one(TypeName::Slice, byte_type); Ty::apply_one(TypeName::Ref(Mutability::Shared), slice_type) } Literal::Char(..) => Ty::simple(TypeName::Char), Literal::Int(_v, ty) => Ty::simple(TypeName::Int(*ty)), Literal::Float(_v, ty) => Ty::simple(TypeName::Float(*ty)), }, }; // use a new type variable if we got Ty::Unknown here let ty = self.insert_type_vars_shallow(ty); self.unify(&ty, &expected.ty); let ty = self.resolve_ty_as_possible(&mut vec![], ty); self.write_expr_ty(tgt_expr, ty.clone()); ty } fn infer_block( &mut self, statements: &[Statement], tail: Option, expected: &Expectation, ) -> Ty { for stmt in statements { match stmt { Statement::Let { pat, type_ref, initializer } => { let decl_ty = type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown); let decl_ty = self.insert_type_vars(decl_ty); let ty = if let Some(expr) = initializer { let expr_ty = self.infer_expr(*expr, &Expectation::has_type(decl_ty)); expr_ty } else { decl_ty }; self.infer_pat(*pat, &ty, BindingMode::default()); } Statement::Expr(expr) => { self.infer_expr(*expr, &Expectation::none()); } } } let ty = if let Some(expr) = tail { self.infer_expr(expr, expected) } else { Ty::unit() }; ty } fn collect_fn_signature(&mut self, signature: &FnSignature) { let body = Arc::clone(&self.body); // avoid borrow checker problem for (type_ref, pat) in signature.params().iter().zip(body.params()) { let ty = self.make_ty(type_ref); self.infer_pat(*pat, &ty, BindingMode::default()); } self.return_ty = self.make_ty(signature.ret_type()); } fn infer_body(&mut self) { self.infer_expr(self.body.body_expr(), &Expectation::has_type(self.return_ty.clone())); } } /// The ID of a type variable. #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] pub struct TypeVarId(u32); impl UnifyKey for TypeVarId { type Value = TypeVarValue; fn index(&self) -> u32 { self.0 } fn from_index(i: u32) -> Self { TypeVarId(i) } fn tag() -> &'static str { "TypeVarId" } } /// The value of a type variable: either we already know the type, or we don't /// know it yet. #[derive(Clone, PartialEq, Eq, Debug)] pub enum TypeVarValue { Known(Ty), Unknown, } impl TypeVarValue { fn known(&self) -> Option<&Ty> { match self { TypeVarValue::Known(ty) => Some(ty), TypeVarValue::Unknown => None, } } } impl UnifyValue for TypeVarValue { type Error = NoError; fn unify_values(value1: &Self, value2: &Self) -> Result { match (value1, value2) { // We should never equate two type variables, both of which have // known types. Instead, we recursively equate those types. (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!( "equating two type variables, both of which have known types: {:?} and {:?}", t1, t2 ), // If one side is known, prefer that one. (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()), (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()), (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown), } } } /// The kinds of placeholders we need during type inference. There's separate /// values for general types, and for integer and float variables. The latter /// two are used for inference of literal values (e.g. `100` could be one of /// several integer types). #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub enum InferTy { TypeVar(TypeVarId), IntVar(TypeVarId), FloatVar(TypeVarId), } impl InferTy { fn to_inner(self) -> TypeVarId { match self { InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) => ty, } } fn fallback_value(self) -> Ty { match self { InferTy::TypeVar(..) => Ty::Unknown, InferTy::IntVar(..) => { Ty::simple(TypeName::Int(primitive::UncertainIntTy::Signed(primitive::IntTy::I32))) } InferTy::FloatVar(..) => Ty::simple(TypeName::Float( primitive::UncertainFloatTy::Known(primitive::FloatTy::F64), )), } } } /// When inferring an expression, we propagate downward whatever type hint we /// are able in the form of an `Expectation`. #[derive(Clone, PartialEq, Eq, Debug)] struct Expectation { ty: Ty, // TODO: In some cases, we need to be aware whether the expectation is that // the type match exactly what we passed, or whether it just needs to be // coercible to the expected type. See Expectation::rvalue_hint in rustc. } impl Expectation { /// The expectation that the type of the expression needs to equal the given /// type. fn has_type(ty: Ty) -> Self { Expectation { ty } } /// This expresses no expectation on the type. fn none() -> Self { Expectation { ty: Ty::Unknown } } }