//! `NameDefinition` keeps information about the element we want to search references for. //! The element is represented by `NameKind`. It's located inside some `container` and //! has a `visibility`, which defines a search scope. //! Note that the reference search is possible for not all of the classified items. // FIXME: this badly needs rename/rewrite (matklad, 2020-02-06). use hir::{ Field, GenericParam, HasVisibility, Impl, Label, Local, MacroDef, Module, ModuleDef, Name, PathResolution, Semantics, Visibility, }; use syntax::{ ast::{self, AstNode, PathSegmentKind}, match_ast, SyntaxKind, SyntaxNode, }; use crate::RootDatabase; // FIXME: a more precise name would probably be `Symbol`? #[derive(Debug, PartialEq, Eq, Copy, Clone)] pub enum Definition { Macro(MacroDef), Field(Field), ModuleDef(ModuleDef), SelfType(Impl), Local(Local), GenericParam(GenericParam), Label(Label), } impl Definition { pub fn module(&self, db: &RootDatabase) -> Option { match self { Definition::Macro(it) => it.module(db), Definition::Field(it) => Some(it.parent_def(db).module(db)), Definition::ModuleDef(it) => it.module(db), Definition::SelfType(it) => Some(it.module(db)), Definition::Local(it) => Some(it.module(db)), Definition::GenericParam(it) => Some(it.module(db)), Definition::Label(it) => Some(it.module(db)), } } pub fn visibility(&self, db: &RootDatabase) -> Option { match self { Definition::Field(sf) => Some(sf.visibility(db)), Definition::ModuleDef(def) => match def { ModuleDef::Module(it) => Some(it.visibility(db)), ModuleDef::Function(it) => Some(it.visibility(db)), ModuleDef::Adt(it) => Some(it.visibility(db)), ModuleDef::Const(it) => Some(it.visibility(db)), ModuleDef::Static(it) => Some(it.visibility(db)), ModuleDef::Trait(it) => Some(it.visibility(db)), ModuleDef::TypeAlias(it) => Some(it.visibility(db)), ModuleDef::Variant(it) => Some(it.visibility(db)), ModuleDef::BuiltinType(_) => None, }, Definition::Macro(_) | Definition::SelfType(_) | Definition::Local(_) | Definition::GenericParam(_) | Definition::Label(_) => None, } } pub fn name(&self, db: &RootDatabase) -> Option { let name = match self { Definition::Macro(it) => it.name(db)?, Definition::Field(it) => it.name(db), Definition::ModuleDef(def) => match def { hir::ModuleDef::Module(it) => it.name(db)?, hir::ModuleDef::Function(it) => it.name(db), hir::ModuleDef::Adt(def) => match def { hir::Adt::Struct(it) => it.name(db), hir::Adt::Union(it) => it.name(db), hir::Adt::Enum(it) => it.name(db), }, hir::ModuleDef::Variant(it) => it.name(db), hir::ModuleDef::Const(it) => it.name(db)?, hir::ModuleDef::Static(it) => it.name(db)?, hir::ModuleDef::Trait(it) => it.name(db), hir::ModuleDef::TypeAlias(it) => it.name(db), hir::ModuleDef::BuiltinType(it) => it.name(), }, Definition::SelfType(_) => return None, Definition::Local(it) => it.name(db)?, Definition::GenericParam(it) => it.name(db), Definition::Label(it) => it.name(db), }; Some(name) } } /// On a first blush, a single `ast::Name` defines a single definition at some /// scope. That is, that, by just looking at the syntactical category, we can /// unambiguously define the semantic category. /// /// Sadly, that's not 100% true, there are special cases. To make sure that /// callers handle all the special cases correctly via exhaustive matching, we /// add a [`NameClass`] enum which lists all of them! /// /// A model special case is `None` constant in pattern. #[derive(Debug)] pub enum NameClass { Definition(Definition), /// `None` in `if let None = Some(82) {}`. /// Syntactically, it is a name, but semantically it is a reference. ConstReference(Definition), /// `field` in `if let Foo { field } = foo`. Here, `ast::Name` both introduces /// a definition into a local scope, and refers to an existing definition. PatFieldShorthand { local_def: Local, field_ref: Field, }, } impl NameClass { /// `Definition` defined by this name. pub fn defined(self) -> Option { let res = match self { NameClass::Definition(it) => it, NameClass::ConstReference(_) => return None, NameClass::PatFieldShorthand { local_def, field_ref: _ } => { Definition::Local(local_def) } }; Some(res) } pub fn classify(sema: &Semantics, name: &ast::Name) -> Option { let _p = profile::span("classify_name"); let parent = name.syntax().parent()?; if let Some(bind_pat) = ast::IdentPat::cast(parent.clone()) { if let Some(def) = sema.resolve_bind_pat_to_const(&bind_pat) { return Some(NameClass::ConstReference(Definition::ModuleDef(def))); } } match_ast! { match parent { ast::Rename(it) => { if let Some(use_tree) = it.syntax().parent().and_then(ast::UseTree::cast) { let path = use_tree.path()?; let path_segment = path.segment()?; let name_ref_class = path_segment .kind() .and_then(|kind| { match kind { // The rename might be from a `self` token, so fallback to the name higher // in the use tree. PathSegmentKind::SelfKw => { let use_tree = use_tree .syntax() .parent() .as_ref() // Skip over UseTreeList .and_then(SyntaxNode::parent) .and_then(ast::UseTree::cast)?; let path = use_tree.path()?; let path_segment = path.segment()?; path_segment.name_ref() }, PathSegmentKind::Name(name_ref) => Some(name_ref), _ => return None, } }) .and_then(|name_ref| NameRefClass::classify(sema, &name_ref))?; Some(NameClass::Definition(match name_ref_class { NameRefClass::Definition(def) => def, NameRefClass::FieldShorthand { local_ref: _, field_ref } => { Definition::Field(field_ref) } })) } else { let extern_crate = it.syntax().parent().and_then(ast::ExternCrate::cast)?; let krate = sema.resolve_extern_crate(&extern_crate)?; let root_module = krate.root_module(sema.db); Some(NameClass::Definition(Definition::ModuleDef(root_module.into()))) } }, ast::IdentPat(it) => { let local = sema.to_def(&it)?; if let Some(record_pat_field) = it.syntax().parent().and_then(ast::RecordPatField::cast) { if record_pat_field.name_ref().is_none() { if let Some(field) = sema.resolve_record_pat_field(&record_pat_field) { return Some(NameClass::PatFieldShorthand { local_def: local, field_ref: field }); } } } Some(NameClass::Definition(Definition::Local(local))) }, ast::SelfParam(it) => { let def = sema.to_def(&it)?; Some(NameClass::Definition(Definition::Local(def))) }, ast::RecordField(it) => { let field: hir::Field = sema.to_def(&it)?; Some(NameClass::Definition(Definition::Field(field))) }, ast::Module(it) => { let def = sema.to_def(&it)?; Some(NameClass::Definition(Definition::ModuleDef(def.into()))) }, ast::Struct(it) => { let def: hir::Struct = sema.to_def(&it)?; Some(NameClass::Definition(Definition::ModuleDef(def.into()))) }, ast::Union(it) => { let def: hir::Union = sema.to_def(&it)?; Some(NameClass::Definition(Definition::ModuleDef(def.into()))) }, ast::Enum(it) => { let def: hir::Enum = sema.to_def(&it)?; Some(NameClass::Definition(Definition::ModuleDef(def.into()))) }, ast::Trait(it) => { let def: hir::Trait = sema.to_def(&it)?; Some(NameClass::Definition(Definition::ModuleDef(def.into()))) }, ast::Static(it) => { let def: hir::Static = sema.to_def(&it)?; Some(NameClass::Definition(Definition::ModuleDef(def.into()))) }, ast::Variant(it) => { let def: hir::Variant = sema.to_def(&it)?; Some(NameClass::Definition(Definition::ModuleDef(def.into()))) }, ast::Fn(it) => { let def: hir::Function = sema.to_def(&it)?; Some(NameClass::Definition(Definition::ModuleDef(def.into()))) }, ast::Const(it) => { let def: hir::Const = sema.to_def(&it)?; Some(NameClass::Definition(Definition::ModuleDef(def.into()))) }, ast::TypeAlias(it) => { let def: hir::TypeAlias = sema.to_def(&it)?; Some(NameClass::Definition(Definition::ModuleDef(def.into()))) }, ast::Macro(it) => { let def = sema.to_def(&it)?; Some(NameClass::Definition(Definition::Macro(def))) }, ast::TypeParam(it) => { let def = sema.to_def(&it)?; Some(NameClass::Definition(Definition::GenericParam(def.into()))) }, ast::ConstParam(it) => { let def = sema.to_def(&it)?; Some(NameClass::Definition(Definition::GenericParam(def.into()))) }, _ => None, } } } pub fn classify_lifetime( sema: &Semantics, lifetime: &ast::Lifetime, ) -> Option { let _p = profile::span("classify_lifetime").detail(|| lifetime.to_string()); let parent = lifetime.syntax().parent()?; match_ast! { match parent { ast::LifetimeParam(it) => { let def = sema.to_def(&it)?; Some(NameClass::Definition(Definition::GenericParam(def.into()))) }, ast::Label(it) => { let def = sema.to_def(&it)?; Some(NameClass::Definition(Definition::Label(def))) }, _ => None, } } } } /// This is similar to [`NameClass`], but works for [`ast::NameRef`] rather than /// for [`ast::Name`]. Similarly, what looks like a reference in syntax is a /// reference most of the time, but there are a couple of annoying exceptions. /// /// A model special case is field shorthand syntax, which uses a single /// reference to point to two different defs. #[derive(Debug)] pub enum NameRefClass { Definition(Definition), FieldShorthand { local_ref: Local, field_ref: Field }, } impl NameRefClass { // Note: we don't have unit-tests for this rather important function. // It is primarily exercised via goto definition tests in `ide`. pub fn classify( sema: &Semantics, name_ref: &ast::NameRef, ) -> Option { let _p = profile::span("classify_name_ref").detail(|| name_ref.to_string()); let parent = name_ref.syntax().parent()?; if let Some(method_call) = ast::MethodCallExpr::cast(parent.clone()) { if let Some(func) = sema.resolve_method_call(&method_call) { return Some(NameRefClass::Definition(Definition::ModuleDef(func.into()))); } } if let Some(field_expr) = ast::FieldExpr::cast(parent.clone()) { if let Some(field) = sema.resolve_field(&field_expr) { return Some(NameRefClass::Definition(Definition::Field(field))); } } if let Some(record_field) = ast::RecordExprField::for_field_name(name_ref) { if let Some((field, local, _)) = sema.resolve_record_field(&record_field) { let res = match local { None => NameRefClass::Definition(Definition::Field(field)), Some(local) => { NameRefClass::FieldShorthand { field_ref: field, local_ref: local } } }; return Some(res); } } if let Some(record_pat_field) = ast::RecordPatField::cast(parent.clone()) { if let Some(field) = sema.resolve_record_pat_field(&record_pat_field) { let field = Definition::Field(field); return Some(NameRefClass::Definition(field)); } } if let Some(assoc_type_arg) = ast::AssocTypeArg::cast(parent.clone()) { if assoc_type_arg.name_ref().as_ref() == Some(name_ref) { // `Trait` // ^^^^^ let path = name_ref.syntax().ancestors().find_map(ast::Path::cast)?; let resolved = sema.resolve_path(&path)?; if let PathResolution::Def(ModuleDef::Trait(tr)) = resolved { // FIXME: resolve in supertraits if let Some(ty) = tr .items(sema.db) .iter() .filter_map(|assoc| match assoc { hir::AssocItem::TypeAlias(it) => Some(*it), _ => None, }) .find(|alias| &alias.name(sema.db).to_string() == &name_ref.text()) { return Some(NameRefClass::Definition(Definition::ModuleDef( ModuleDef::TypeAlias(ty), ))); } } return None; } } if let Some(path) = name_ref.syntax().ancestors().find_map(ast::Path::cast) { if path.qualifier().is_none() { if let Some(macro_call) = path.syntax().parent().and_then(ast::MacroCall::cast) { // Only use this to resolve single-segment macro calls like `foo!()`. Multi-segment // paths are handled below (allowing `log$0::info!` to resolve to the log crate). if let Some(macro_def) = sema.resolve_macro_call(¯o_call) { return Some(NameRefClass::Definition(Definition::Macro(macro_def))); } } } let top_path = path.top_path(); let is_attribute_path = top_path .syntax() .ancestors() .find_map(ast::Attr::cast) .map(|attr| attr.path().as_ref() == Some(&top_path)); return match is_attribute_path { Some(true) => sema.resolve_path(&path).and_then(|resolved| { match resolved { // Don't wanna collide with builtin attributes here like `test` hence guard // so only resolve to modules that aren't the last segment PathResolution::Def(module @ ModuleDef::Module(_)) if path != top_path => { cov_mark::hit!(name_ref_classify_attr_path_qualifier); Some(NameRefClass::Definition(Definition::ModuleDef(module))) } PathResolution::Macro(mac) if mac.kind() == hir::MacroKind::Attr => { Some(NameRefClass::Definition(Definition::Macro(mac))) } _ => None, } }), Some(false) => None, None => sema.resolve_path(&path).map(Into::into).map(NameRefClass::Definition), }; } let extern_crate = ast::ExternCrate::cast(parent)?; let krate = sema.resolve_extern_crate(&extern_crate)?; let root_module = krate.root_module(sema.db); Some(NameRefClass::Definition(Definition::ModuleDef(root_module.into()))) } pub fn classify_lifetime( sema: &Semantics, lifetime: &ast::Lifetime, ) -> Option { let _p = profile::span("classify_lifetime_ref").detail(|| lifetime.to_string()); let parent = lifetime.syntax().parent()?; match parent.kind() { SyntaxKind::BREAK_EXPR | SyntaxKind::CONTINUE_EXPR => { sema.resolve_label(lifetime).map(Definition::Label).map(NameRefClass::Definition) } SyntaxKind::LIFETIME_ARG | SyntaxKind::SELF_PARAM | SyntaxKind::TYPE_BOUND | SyntaxKind::WHERE_PRED | SyntaxKind::REF_TYPE => sema .resolve_lifetime_param(lifetime) .map(GenericParam::LifetimeParam) .map(Definition::GenericParam) .map(NameRefClass::Definition), // lifetime bounds, as in the 'b in 'a: 'b aren't wrapped in TypeBound nodes so we gotta check // if our lifetime is in a LifetimeParam without being the constrained lifetime _ if ast::LifetimeParam::cast(parent).and_then(|param| param.lifetime()).as_ref() != Some(lifetime) => { sema.resolve_lifetime_param(lifetime) .map(GenericParam::LifetimeParam) .map(Definition::GenericParam) .map(NameRefClass::Definition) } _ => None, } } } impl From for Definition { fn from(path_resolution: PathResolution) -> Self { match path_resolution { PathResolution::Def(def) => Definition::ModuleDef(def), PathResolution::AssocItem(item) => { let def = match item { hir::AssocItem::Function(it) => it.into(), hir::AssocItem::Const(it) => it.into(), hir::AssocItem::TypeAlias(it) => it.into(), }; Definition::ModuleDef(def) } PathResolution::Local(local) => Definition::Local(local), PathResolution::TypeParam(par) => Definition::GenericParam(par.into()), PathResolution::Macro(def) => Definition::Macro(def), PathResolution::SelfType(impl_def) => Definition::SelfType(impl_def), PathResolution::ConstParam(par) => Definition::GenericParam(par.into()), } } }