use either::Either; use hir::{ db::{ExpandDatabase, HirDatabase}, known, AssocItem, HirDisplay, InFile, Type, }; use ide_db::{ assists::Assist, famous_defs::FamousDefs, imports::import_assets::item_for_path_search, source_change::SourceChange, use_trivial_constructor::use_trivial_constructor, FxHashMap, }; use stdx::format_to; use syntax::{ algo, ast::{self, make}, AstNode, SyntaxNode, SyntaxNodePtr, }; use text_edit::TextEdit; use crate::{fix, Diagnostic, DiagnosticCode, DiagnosticsContext}; // Diagnostic: missing-fields // // This diagnostic is triggered if record lacks some fields that exist in the corresponding structure. // // Example: // // ```rust // struct A { a: u8, b: u8 } // // let a = A { a: 10 }; // ``` pub(crate) fn missing_fields(ctx: &DiagnosticsContext<'_>, d: &hir::MissingFields) -> Diagnostic { let mut message = String::from("missing structure fields:\n"); for field in &d.missed_fields { format_to!(message, "- {}\n", field.display(ctx.sema.db)); } let ptr = InFile::new( d.file, d.field_list_parent_path .clone() .map(SyntaxNodePtr::from) .unwrap_or_else(|| d.field_list_parent.clone().either(|it| it.into(), |it| it.into())), ); Diagnostic::new_with_syntax_node_ptr(ctx, DiagnosticCode::RustcHardError("E0063"), message, ptr) .with_fixes(fixes(ctx, d)) } fn fixes(ctx: &DiagnosticsContext<'_>, d: &hir::MissingFields) -> Option> { // Note that although we could add a diagnostics to // fill the missing tuple field, e.g : // `struct A(usize);` // `let a = A { 0: () }` // but it is uncommon usage and it should not be encouraged. if d.missed_fields.iter().any(|it| it.as_tuple_index().is_some()) { return None; } let root = ctx.sema.db.parse_or_expand(d.file); let current_module = match &d.field_list_parent { Either::Left(ptr) => ctx.sema.scope(ptr.to_node(&root).syntax()).map(|it| it.module()), Either::Right(ptr) => ctx.sema.scope(ptr.to_node(&root).syntax()).map(|it| it.module()), }; let build_text_edit = |parent_syntax, new_syntax: &SyntaxNode, old_syntax| { let edit = { let mut builder = TextEdit::builder(); if d.file.is_macro() { // we can't map the diff up into the macro input unfortunately, as the macro loses all // whitespace information so the diff wouldn't be applicable no matter what // This has the downside that the cursor will be moved in macros by doing it without a diff // but that is a trade off we can make. // FIXME: this also currently discards a lot of whitespace in the input... we really need a formatter here let range = ctx.sema.original_range_opt(old_syntax)?; builder.replace(range.range, new_syntax.to_string()); } else { algo::diff(old_syntax, new_syntax).into_text_edit(&mut builder); } builder.finish() }; Some(vec![fix( "fill_missing_fields", "Fill struct fields", SourceChange::from_text_edit(d.file.original_file(ctx.sema.db), edit), ctx.sema.original_range(parent_syntax).range, )]) }; match &d.field_list_parent { Either::Left(record_expr) => { let field_list_parent = record_expr.to_node(&root); let missing_fields = ctx.sema.record_literal_missing_fields(&field_list_parent); let mut locals = FxHashMap::default(); ctx.sema.scope(field_list_parent.syntax())?.process_all_names(&mut |name, def| { if let hir::ScopeDef::Local(local) = def { locals.insert(name, local); } }); let generate_fill_expr = |ty: &Type| match ctx.config.expr_fill_default { crate::ExprFillDefaultMode::Todo => make::ext::expr_todo(), crate::ExprFillDefaultMode::Default => { get_default_constructor(ctx, d, ty).unwrap_or_else(|| make::ext::expr_todo()) } }; let old_field_list = field_list_parent.record_expr_field_list()?; let new_field_list = old_field_list.clone_for_update(); for (f, ty) in missing_fields.iter() { let field_expr = if let Some(local_candidate) = locals.get(&f.name(ctx.sema.db)) { cov_mark::hit!(field_shorthand); let candidate_ty = local_candidate.ty(ctx.sema.db); if ty.could_unify_with(ctx.sema.db, &candidate_ty) { None } else { Some(generate_fill_expr(ty)) } } else { let expr = (|| -> Option { let item_in_ns = hir::ItemInNs::from(hir::ModuleDef::from(ty.as_adt()?)); let type_path = current_module?.find_use_path( ctx.sema.db, item_for_path_search(ctx.sema.db, item_in_ns)?, ctx.config.prefer_no_std, )?; use_trivial_constructor( ctx.sema.db, ide_db::helpers::mod_path_to_ast(&type_path), ty, ) })(); if expr.is_some() { expr } else { Some(generate_fill_expr(ty)) } }; let field = make::record_expr_field( make::name_ref(&f.name(ctx.sema.db).to_smol_str()), field_expr, ); new_field_list.add_field(field.clone_for_update()); } build_text_edit( field_list_parent.syntax(), new_field_list.syntax(), old_field_list.syntax(), ) } Either::Right(record_pat) => { let field_list_parent = record_pat.to_node(&root); let missing_fields = ctx.sema.record_pattern_missing_fields(&field_list_parent); let old_field_list = field_list_parent.record_pat_field_list()?; let new_field_list = old_field_list.clone_for_update(); for (f, _) in missing_fields.iter() { let field = make::record_pat_field_shorthand(make::name_ref( &f.name(ctx.sema.db).to_smol_str(), )); new_field_list.add_field(field.clone_for_update()); } build_text_edit( field_list_parent.syntax(), new_field_list.syntax(), old_field_list.syntax(), ) } } } fn make_ty(ty: &hir::Type, db: &dyn HirDatabase, module: hir::Module) -> ast::Type { let ty_str = match ty.as_adt() { Some(adt) => adt.name(db).display(db.upcast()).to_string(), None => { ty.display_source_code(db, module.into(), false).ok().unwrap_or_else(|| "_".to_string()) } }; make::ty(&ty_str) } fn get_default_constructor( ctx: &DiagnosticsContext<'_>, d: &hir::MissingFields, ty: &Type, ) -> Option { if let Some(builtin_ty) = ty.as_builtin() { if builtin_ty.is_int() || builtin_ty.is_uint() { return Some(make::ext::zero_number()); } if builtin_ty.is_float() { return Some(make::ext::zero_float()); } if builtin_ty.is_char() { return Some(make::ext::empty_char()); } if builtin_ty.is_str() { return Some(make::ext::empty_str()); } if builtin_ty.is_bool() { return Some(make::ext::default_bool()); } } let krate = ctx.sema.to_module_def(d.file.original_file(ctx.sema.db))?.krate(); let module = krate.root_module(); // Look for a ::new() associated function let has_new_func = ty .iterate_assoc_items(ctx.sema.db, krate, |assoc_item| { if let AssocItem::Function(func) = assoc_item { if func.name(ctx.sema.db) == known::new && func.assoc_fn_params(ctx.sema.db).is_empty() { return Some(()); } } None }) .is_some(); let famous_defs = FamousDefs(&ctx.sema, krate); if has_new_func { Some(make::ext::expr_ty_new(&make_ty(ty, ctx.sema.db, module))) } else if ty.as_adt() == famous_defs.core_option_Option()?.ty(ctx.sema.db).as_adt() { Some(make::ext::option_none()) } else if !ty.is_array() && ty.impls_trait(ctx.sema.db, famous_defs.core_default_Default()?, &[]) { Some(make::ext::expr_ty_default(&make_ty(ty, ctx.sema.db, module))) } else { None } } #[cfg(test)] mod tests { use crate::tests::{check_diagnostics, check_fix}; #[test] fn missing_record_pat_field_diagnostic() { check_diagnostics( r#" struct S { foo: i32, bar: () } fn baz(s: S) { let S { foo: _ } = s; //^ 💡 error: missing structure fields: //| - bar } "#, ); } #[test] fn missing_record_pat_field_no_diagnostic_if_not_exhaustive() { check_diagnostics( r" struct S { foo: i32, bar: () } fn baz(s: S) -> i32 { match s { S { foo, .. } => foo, } } ", ) } #[test] fn missing_record_pat_field_box() { check_diagnostics( r" struct S { s: Box } fn x(a: S) { let S { box s } = a; } ", ) } #[test] fn missing_record_pat_field_ref() { check_diagnostics( r" struct S { s: u32 } fn x(a: S) { let S { ref s } = a; } ", ) } #[test] fn missing_record_expr_in_assignee_expr() { check_diagnostics( r" struct S { s: usize, t: usize } struct S2 { s: S, t: () } struct T(S); fn regular(a: S) { let s; S { s, .. } = a; } fn nested(a: S2) { let s; S2 { s: S { s, .. }, .. } = a; } fn in_tuple(a: (S,)) { let s; (S { s, .. },) = a; } fn in_array(a: [S;1]) { let s; [S { s, .. },] = a; } fn in_tuple_struct(a: T) { let s; T(S { s, .. }) = a; } ", ); } #[test] fn range_mapping_out_of_macros() { check_fix( r#" fn some() {} fn items() {} fn here() {} macro_rules! id { ($($tt:tt)*) => { $($tt)*}; } fn main() { let _x = id![Foo { a: $042 }]; } pub struct Foo { pub a: i32, pub b: i32 } "#, r#" fn some() {} fn items() {} fn here() {} macro_rules! id { ($($tt:tt)*) => { $($tt)*}; } fn main() { let _x = id![Foo {a:42, b: 0 }]; } pub struct Foo { pub a: i32, pub b: i32 } "#, ); } #[test] fn test_fill_struct_fields_empty() { check_fix( r#" //- minicore: option struct TestStruct { one: i32, two: i64, three: Option, four: bool } fn test_fn() { let s = TestStruct {$0}; } "#, r#" struct TestStruct { one: i32, two: i64, three: Option, four: bool } fn test_fn() { let s = TestStruct { one: 0, two: 0, three: None, four: false }; } "#, ); } #[test] fn test_fill_struct_zst_fields() { check_fix( r#" struct Empty; struct TestStruct { one: i32, two: Empty } fn test_fn() { let s = TestStruct {$0}; } "#, r#" struct Empty; struct TestStruct { one: i32, two: Empty } fn test_fn() { let s = TestStruct { one: 0, two: Empty }; } "#, ); check_fix( r#" enum Empty { Foo }; struct TestStruct { one: i32, two: Empty } fn test_fn() { let s = TestStruct {$0}; } "#, r#" enum Empty { Foo }; struct TestStruct { one: i32, two: Empty } fn test_fn() { let s = TestStruct { one: 0, two: Empty::Foo }; } "#, ); // make sure the assist doesn't fill non Unit variants check_fix( r#" struct Empty {}; struct TestStruct { one: i32, two: Empty } fn test_fn() { let s = TestStruct {$0}; } "#, r#" struct Empty {}; struct TestStruct { one: i32, two: Empty } fn test_fn() { let s = TestStruct { one: 0, two: todo!() }; } "#, ); check_fix( r#" enum Empty { Foo {} }; struct TestStruct { one: i32, two: Empty } fn test_fn() { let s = TestStruct {$0}; } "#, r#" enum Empty { Foo {} }; struct TestStruct { one: i32, two: Empty } fn test_fn() { let s = TestStruct { one: 0, two: todo!() }; } "#, ); } #[test] fn test_fill_struct_fields_self() { check_fix( r#" struct TestStruct { one: i32 } impl TestStruct { fn test_fn() { let s = Self {$0}; } } "#, r#" struct TestStruct { one: i32 } impl TestStruct { fn test_fn() { let s = Self { one: 0 }; } } "#, ); } #[test] fn test_fill_struct_fields_enum() { check_fix( r#" enum Expr { Bin { lhs: Box, rhs: Box } } impl Expr { fn new_bin(lhs: Box, rhs: Box) -> Expr { Expr::Bin {$0 } } } "#, r#" enum Expr { Bin { lhs: Box, rhs: Box } } impl Expr { fn new_bin(lhs: Box, rhs: Box) -> Expr { Expr::Bin { lhs, rhs } } } "#, ); } #[test] fn test_fill_struct_fields_partial() { check_fix( r#" struct TestStruct { one: i32, two: i64 } fn test_fn() { let s = TestStruct{ two: 2$0 }; } "#, r" struct TestStruct { one: i32, two: i64 } fn test_fn() { let s = TestStruct{ two: 2, one: 0 }; } ", ); } #[test] fn test_fill_struct_fields_new() { check_fix( r#" struct TestWithNew(usize); impl TestWithNew { pub fn new() -> Self { Self(0) } } struct TestStruct { one: i32, two: TestWithNew } fn test_fn() { let s = TestStruct{ $0 }; } "#, r" struct TestWithNew(usize); impl TestWithNew { pub fn new() -> Self { Self(0) } } struct TestStruct { one: i32, two: TestWithNew } fn test_fn() { let s = TestStruct{ one: 0, two: TestWithNew::new() }; } ", ); } #[test] fn test_fill_struct_fields_default() { check_fix( r#" //- minicore: default, option struct TestWithDefault(usize); impl Default for TestWithDefault { pub fn default() -> Self { Self(0) } } struct TestStruct { one: i32, two: TestWithDefault } fn test_fn() { let s = TestStruct{ $0 }; } "#, r" struct TestWithDefault(usize); impl Default for TestWithDefault { pub fn default() -> Self { Self(0) } } struct TestStruct { one: i32, two: TestWithDefault } fn test_fn() { let s = TestStruct{ one: 0, two: TestWithDefault::default() }; } ", ); } #[test] fn test_fill_struct_fields_raw_ident() { check_fix( r#" struct TestStruct { r#type: u8 } fn test_fn() { TestStruct { $0 }; } "#, r" struct TestStruct { r#type: u8 } fn test_fn() { TestStruct { r#type: 0 }; } ", ); } #[test] fn test_fill_struct_fields_no_diagnostic() { check_diagnostics( r#" struct TestStruct { one: i32, two: i64 } fn test_fn() { let one = 1; let s = TestStruct{ one, two: 2 }; } "#, ); } #[test] fn test_fill_struct_fields_no_diagnostic_on_spread() { check_diagnostics( r#" struct TestStruct { one: i32, two: i64 } fn test_fn() { let one = 1; let s = TestStruct{ ..a }; } "#, ); } #[test] fn test_fill_struct_fields_blank_line() { check_fix( r#" struct S { a: (), b: () } fn f() { S { $0 }; } "#, r#" struct S { a: (), b: () } fn f() { S { a: todo!(), b: todo!(), }; } "#, ); } #[test] fn test_fill_struct_fields_shorthand() { cov_mark::check!(field_shorthand); check_fix( r#" struct S { a: &'static str, b: i32 } fn f() { let a = "hello"; let b = 1i32; S { $0 }; } "#, r#" struct S { a: &'static str, b: i32 } fn f() { let a = "hello"; let b = 1i32; S { a, b, }; } "#, ); } #[test] fn test_fill_struct_fields_shorthand_ty_mismatch() { check_fix( r#" struct S { a: &'static str, b: i32 } fn f() { let a = "hello"; let b = 1usize; S { $0 }; } "#, r#" struct S { a: &'static str, b: i32 } fn f() { let a = "hello"; let b = 1usize; S { a, b: 0, }; } "#, ); } #[test] fn test_fill_struct_fields_shorthand_unifies() { check_fix( r#" struct S { a: &'static str, b: T } fn f() { let a = "hello"; let b = 1i32; S { $0 }; } "#, r#" struct S { a: &'static str, b: T } fn f() { let a = "hello"; let b = 1i32; S { a, b, }; } "#, ); } #[test] fn test_fill_struct_pat_fields() { check_fix( r#" struct S { a: &'static str, b: i32 } fn f() { let S { $0 }; } "#, r#" struct S { a: &'static str, b: i32 } fn f() { let S { a, b, }; } "#, ); } #[test] fn test_fill_struct_pat_fields_partial() { check_fix( r#" struct S { a: &'static str, b: i32 } fn f() { let S { a,$0 }; } "#, r#" struct S { a: &'static str, b: i32 } fn f() { let S { a, b, }; } "#, ); } #[test] fn import_extern_crate_clash_with_inner_item() { // This is more of a resolver test, but doesn't really work with the hir_def testsuite. check_diagnostics( r#" //- /lib.rs crate:lib deps:jwt mod permissions; use permissions::jwt; fn f() { fn inner() {} jwt::Claims {}; // should resolve to the local one with 0 fields, and not get a diagnostic } //- /permissions.rs pub mod jwt { pub struct Claims {} } //- /jwt/lib.rs crate:jwt pub struct Claims { field: u8, } "#, ); } }