//! Helper functions for working with def, which don't need to be a separate //! query, but can't be computed directly from `*Data` (ie, which need a `db`). use std::{hash::Hash, iter}; use base_db::CrateId; use chalk_ir::{ cast::Cast, fold::{FallibleTypeFolder, Shift}, BoundVar, DebruijnIndex, }; use either::Either; use hir_def::{ db::DefDatabase, generics::{ GenericParams, TypeOrConstParamData, TypeParamProvenance, WherePredicate, WherePredicateTypeTarget, }, lang_item::LangItem, resolver::{HasResolver, TypeNs}, type_ref::{TraitBoundModifier, TypeRef}, ConstParamId, EnumId, EnumVariantId, FunctionId, GenericDefId, ItemContainerId, Lookup, OpaqueInternableThing, TraitId, TypeAliasId, TypeOrConstParamId, TypeParamId, }; use hir_expand::name::Name; use intern::Interned; use rustc_abi::TargetDataLayout; use rustc_hash::FxHashSet; use smallvec::{smallvec, SmallVec}; use stdx::never; use crate::{ consteval::unknown_const, db::HirDatabase, layout::{Layout, TagEncoding}, mir::pad16, ChalkTraitId, Const, ConstScalar, GenericArg, Interner, Substitution, TraitRef, TraitRefExt, Ty, WhereClause, }; pub(crate) fn fn_traits( db: &dyn DefDatabase, krate: CrateId, ) -> impl Iterator + '_ { [LangItem::Fn, LangItem::FnMut, LangItem::FnOnce] .into_iter() .filter_map(move |lang| db.lang_item(krate, lang)) .flat_map(|it| it.as_trait()) } /// Returns an iterator over the whole super trait hierarchy (including the /// trait itself). pub fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> SmallVec<[TraitId; 4]> { // we need to take care a bit here to avoid infinite loops in case of cycles // (i.e. if we have `trait A: B; trait B: A;`) let mut result = smallvec![trait_]; let mut i = 0; while let Some(&t) = result.get(i) { // yeah this is quadratic, but trait hierarchies should be flat // enough that this doesn't matter direct_super_traits(db, t, |tt| { if !result.contains(&tt) { result.push(tt); } }); i += 1; } result } /// Given a trait ref (`Self: Trait`), builds all the implied trait refs for /// super traits. The original trait ref will be included. So the difference to /// `all_super_traits` is that we keep track of type parameters; for example if /// we have `Self: Trait` and `Trait: OtherTrait` we'll get /// `Self: OtherTrait`. pub(super) fn all_super_trait_refs( db: &dyn HirDatabase, trait_ref: TraitRef, cb: impl FnMut(TraitRef) -> Option, ) -> Option { let seen = iter::once(trait_ref.trait_id).collect(); SuperTraits { db, seen, stack: vec![trait_ref] }.find_map(cb) } struct SuperTraits<'a> { db: &'a dyn HirDatabase, stack: Vec, seen: FxHashSet, } impl SuperTraits<'_> { fn elaborate(&mut self, trait_ref: &TraitRef) { direct_super_trait_refs(self.db, trait_ref, |trait_ref| { if !self.seen.contains(&trait_ref.trait_id) { self.stack.push(trait_ref); } }); } } impl Iterator for SuperTraits<'_> { type Item = TraitRef; fn next(&mut self) -> Option { if let Some(next) = self.stack.pop() { self.elaborate(&next); Some(next) } else { None } } } fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId, cb: impl FnMut(TraitId)) { let resolver = trait_.resolver(db); let generic_params = db.generic_params(trait_.into()); let trait_self = generic_params.find_trait_self_param(); generic_params .where_predicates .iter() .filter_map(|pred| match pred { WherePredicate::ForLifetime { target, bound, .. } | WherePredicate::TypeBound { target, bound } => { let is_trait = match target { WherePredicateTypeTarget::TypeRef(type_ref) => match &**type_ref { TypeRef::Path(p) => p.is_self_type(), _ => false, }, WherePredicateTypeTarget::TypeOrConstParam(local_id) => { Some(*local_id) == trait_self } }; match is_trait { true => bound.as_path(), false => None, } } WherePredicate::Lifetime { .. } => None, }) .filter(|(_, bound_modifier)| matches!(bound_modifier, TraitBoundModifier::None)) .filter_map(|(path, _)| match resolver.resolve_path_in_type_ns_fully(db, path) { Some(TypeNs::TraitId(t)) => Some(t), _ => None, }) .for_each(cb); } fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef, cb: impl FnMut(TraitRef)) { let generic_params = db.generic_params(trait_ref.hir_trait_id().into()); let trait_self = match generic_params.find_trait_self_param() { Some(p) => TypeOrConstParamId { parent: trait_ref.hir_trait_id().into(), local_id: p }, None => return, }; db.generic_predicates_for_param(trait_self.parent, trait_self, None) .iter() .filter_map(|pred| { pred.as_ref().filter_map(|pred| match pred.skip_binders() { // FIXME: how to correctly handle higher-ranked bounds here? WhereClause::Implemented(tr) => Some( tr.clone() .shifted_out_to(Interner, DebruijnIndex::ONE) .expect("FIXME unexpected higher-ranked trait bound"), ), _ => None, }) }) .map(|pred| pred.substitute(Interner, &trait_ref.substitution)) .for_each(cb); } pub(super) fn associated_type_by_name_including_super_traits( db: &dyn HirDatabase, trait_ref: TraitRef, name: &Name, ) -> Option<(TraitRef, TypeAliasId)> { all_super_trait_refs(db, trait_ref, |t| { let assoc_type = db.trait_data(t.hir_trait_id()).associated_type_by_name(name)?; Some((t, assoc_type)) }) } pub(crate) fn generics(db: &dyn DefDatabase, def: GenericDefId) -> Generics { let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def))); Generics { def, params: db.generic_params(def), parent_generics } } /// It is a bit different from the rustc equivalent. Currently it stores: /// - 0: the function signature, encoded as a function pointer type /// - 1..n: generics of the parent /// /// and it doesn't store the closure types and fields. /// /// Codes should not assume this ordering, and should always use methods available /// on this struct for retrieving, and `TyBuilder::substs_for_closure` for creating. pub(crate) struct ClosureSubst<'a>(pub(crate) &'a Substitution); impl<'a> ClosureSubst<'a> { pub(crate) fn parent_subst(&self) -> &'a [GenericArg] { match self.0.as_slice(Interner) { [_, x @ ..] => x, _ => { never!("Closure missing parameter"); &[] } } } pub(crate) fn sig_ty(&self) -> &'a Ty { match self.0.as_slice(Interner) { [x, ..] => x.assert_ty_ref(Interner), _ => { unreachable!("Closure missing sig_ty parameter"); } } } } #[derive(Debug)] pub(crate) struct Generics { def: GenericDefId, pub(crate) params: Interned, parent_generics: Option>, } impl Generics { pub(crate) fn iter_id(&self) -> impl Iterator> + '_ { self.iter().map(|(id, data)| match data { TypeOrConstParamData::TypeParamData(_) => Either::Left(TypeParamId::from_unchecked(id)), TypeOrConstParamData::ConstParamData(_) => { Either::Right(ConstParamId::from_unchecked(id)) } }) } /// Iterator over types and const params of self, then parent. pub(crate) fn iter<'a>( &'a self, ) -> impl DoubleEndedIterator + 'a { let to_toc_id = |it: &'a Generics| { move |(local_id, p)| (TypeOrConstParamId { parent: it.def, local_id }, p) }; self.params.iter().map(to_toc_id(self)).chain(self.iter_parent()) } /// Iterate over types and const params without parent params. pub(crate) fn iter_self<'a>( &'a self, ) -> impl DoubleEndedIterator + 'a { let to_toc_id = |it: &'a Generics| { move |(local_id, p)| (TypeOrConstParamId { parent: it.def, local_id }, p) }; self.params.iter().map(to_toc_id(self)) } /// Iterator over types and const params of parent. pub(crate) fn iter_parent( &self, ) -> impl DoubleEndedIterator { self.parent_generics().into_iter().flat_map(|it| { let to_toc_id = move |(local_id, p)| (TypeOrConstParamId { parent: it.def, local_id }, p); it.params.iter().map(to_toc_id) }) } /// Returns total number of generic parameters in scope, including those from parent. pub(crate) fn len(&self) -> usize { let parent = self.parent_generics().map_or(0, Generics::len); let child = self.params.type_or_consts.len(); parent + child } /// Returns numbers of generic parameters excluding those from parent. pub(crate) fn len_self(&self) -> usize { self.params.type_or_consts.len() } /// (parent total, self param, type param list, const param list, impl trait) pub(crate) fn provenance_split(&self) -> (usize, usize, usize, usize, usize) { let mut self_params = 0; let mut type_params = 0; let mut impl_trait_params = 0; let mut const_params = 0; self.params.iter().for_each(|(_, data)| match data { TypeOrConstParamData::TypeParamData(p) => match p.provenance { TypeParamProvenance::TypeParamList => type_params += 1, TypeParamProvenance::TraitSelf => self_params += 1, TypeParamProvenance::ArgumentImplTrait => impl_trait_params += 1, }, TypeOrConstParamData::ConstParamData(_) => const_params += 1, }); let parent_len = self.parent_generics().map_or(0, Generics::len); (parent_len, self_params, type_params, const_params, impl_trait_params) } pub(crate) fn param_idx(&self, param: TypeOrConstParamId) -> Option { Some(self.find_param(param)?.0) } fn find_param(&self, param: TypeOrConstParamId) -> Option<(usize, &TypeOrConstParamData)> { if param.parent == self.def { let (idx, (_local_id, data)) = self.params.iter().enumerate().find(|(_, (idx, _))| *idx == param.local_id)?; Some((idx, data)) } else { self.parent_generics() .and_then(|g| g.find_param(param)) // Remember that parent parameters come after parameters for self. .map(|(idx, data)| (self.len_self() + idx, data)) } } pub(crate) fn parent_generics(&self) -> Option<&Generics> { self.parent_generics.as_deref() } /// Returns a Substitution that replaces each parameter by a bound variable. pub(crate) fn bound_vars_subst( &self, db: &dyn HirDatabase, debruijn: DebruijnIndex, ) -> Substitution { Substitution::from_iter( Interner, self.iter_id().enumerate().map(|(idx, id)| match id { Either::Left(_) => BoundVar::new(debruijn, idx).to_ty(Interner).cast(Interner), Either::Right(id) => BoundVar::new(debruijn, idx) .to_const(Interner, db.const_param_ty(id)) .cast(Interner), }), ) } /// Returns a Substitution that replaces each parameter by itself (i.e. `Ty::Param`). pub(crate) fn placeholder_subst(&self, db: &dyn HirDatabase) -> Substitution { Substitution::from_iter( Interner, self.iter_id().map(|id| match id { Either::Left(id) => { crate::to_placeholder_idx(db, id.into()).to_ty(Interner).cast(Interner) } Either::Right(id) => crate::to_placeholder_idx(db, id.into()) .to_const(Interner, db.const_param_ty(id)) .cast(Interner), }), ) } } fn parent_generic_def(db: &dyn DefDatabase, def: GenericDefId) -> Option { let container = match def { GenericDefId::FunctionId(it) => it.lookup(db).container, GenericDefId::TypeAliasId(it) => it.lookup(db).container, GenericDefId::ConstId(it) => it.lookup(db).container, GenericDefId::EnumVariantId(it) => return Some(it.lookup(db).parent.into()), GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) | GenericDefId::TraitAliasId(_) => return None, }; match container { ItemContainerId::ImplId(it) => Some(it.into()), ItemContainerId::TraitId(it) => Some(it.into()), ItemContainerId::ModuleId(_) | ItemContainerId::ExternBlockId(_) => None, } } pub fn is_fn_unsafe_to_call(db: &dyn HirDatabase, func: FunctionId) -> bool { let data = db.function_data(func); if data.has_unsafe_kw() { return true; } match func.lookup(db.upcast()).container { hir_def::ItemContainerId::ExternBlockId(block) => { // Function in an `extern` block are always unsafe to call, except when it has // `"rust-intrinsic"` ABI there are a few exceptions. let id = block.lookup(db.upcast()).id; let is_intrinsic = id.item_tree(db.upcast())[id.value].abi.as_deref() == Some("rust-intrinsic"); if is_intrinsic { // Intrinsics are unsafe unless they have the rustc_safe_intrinsic attribute !data.attrs.by_key("rustc_safe_intrinsic").exists() } else { // Extern items are always unsafe true } } _ => false, } } pub(crate) struct UnevaluatedConstEvaluatorFolder<'a> { pub(crate) db: &'a dyn HirDatabase, } impl FallibleTypeFolder for UnevaluatedConstEvaluatorFolder<'_> { type Error = (); fn as_dyn(&mut self) -> &mut dyn FallibleTypeFolder { self } fn interner(&self) -> Interner { Interner } fn try_fold_const( &mut self, constant: Const, _outer_binder: DebruijnIndex, ) -> Result { if let chalk_ir::ConstValue::Concrete(c) = &constant.data(Interner).value { if let ConstScalar::UnevaluatedConst(id, subst) = &c.interned { if let Ok(eval) = self.db.const_eval(*id, subst.clone(), None) { return Ok(eval); } else { return Ok(unknown_const(constant.data(Interner).ty.clone())); } } } Ok(constant) } } pub(crate) fn detect_variant_from_bytes<'a>( layout: &'a Layout, db: &dyn HirDatabase, target_data_layout: &TargetDataLayout, b: &[u8], e: EnumId, ) -> Option<(EnumVariantId, &'a Layout)> { let (var_id, var_layout) = match &layout.variants { hir_def::layout::Variants::Single { index } => { (db.enum_data(e).variants[index.0].0, layout) } hir_def::layout::Variants::Multiple { tag, tag_encoding, variants, .. } => { let size = tag.size(target_data_layout).bytes_usize(); let offset = layout.fields.offset(0).bytes_usize(); // The only field on enum variants is the tag field let tag = i128::from_le_bytes(pad16(&b[offset..offset + size], false)); match tag_encoding { TagEncoding::Direct => { let (var_idx, layout) = variants.iter_enumerated().find_map(|(var_idx, v)| { let def = db.enum_data(e).variants[var_idx.0].0; (db.const_eval_discriminant(def) == Ok(tag)).then_some((def, v)) })?; (var_idx, layout) } TagEncoding::Niche { untagged_variant, niche_start, .. } => { let candidate_tag = tag.wrapping_sub(*niche_start as i128) as usize; let variant = variants .iter_enumerated() .map(|(x, _)| x) .filter(|x| x != untagged_variant) .nth(candidate_tag) .unwrap_or(*untagged_variant); (db.enum_data(e).variants[variant.0].0, &variants[variant]) } } } }; Some((var_id, var_layout)) } #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub(crate) struct InTypeConstIdMetadata(pub(crate) Ty); impl OpaqueInternableThing for InTypeConstIdMetadata { fn dyn_hash(&self, mut state: &mut dyn std::hash::Hasher) { self.hash(&mut state); } fn dyn_eq(&self, other: &dyn OpaqueInternableThing) -> bool { other.as_any().downcast_ref::().map_or(false, |x| self == x) } fn dyn_clone(&self) -> Box { Box::new(self.clone()) } fn as_any(&self) -> &dyn std::any::Any { self } fn box_any(&self) -> Box { Box::new(self.clone()) } }