//! This module defines `AssistCtx` -- the API surface that is exposed to assists. use hir::{db::HirDatabase, InFile, SourceAnalyzer}; use ra_db::FileRange; use ra_fmt::{leading_indent, reindent}; use ra_syntax::{ algo::{self, find_covering_element, find_node_at_offset}, AstNode, SourceFile, SyntaxElement, SyntaxKind, SyntaxNode, SyntaxToken, TextRange, TextUnit, TokenAtOffset, }; use ra_text_edit::TextEditBuilder; use crate::{AssistAction, AssistId, AssistLabel}; #[derive(Clone, Debug)] pub(crate) enum Assist { Unresolved { label: AssistLabel }, Resolved { label: AssistLabel, action: AssistAction, alternative_actions: Vec }, } /// `AssistCtx` allows to apply an assist or check if it could be applied. /// /// Assists use a somewhat over-engineered approach, given the current needs. The /// assists workflow consists of two phases. In the first phase, a user asks for /// the list of available assists. In the second phase, the user picks a /// particular assist and it gets applied. /// /// There are two peculiarities here: /// /// * first, we ideally avoid computing more things then necessary to answer /// "is assist applicable" in the first phase. /// * second, when we are applying assist, we don't have a guarantee that there /// weren't any changes between the point when user asked for assists and when /// they applied a particular assist. So, when applying assist, we need to do /// all the checks from scratch. /// /// To avoid repeating the same code twice for both "check" and "apply" /// functions, we use an approach reminiscent of that of Django's function based /// views dealing with forms. Each assist receives a runtime parameter, /// `should_compute_edit`. It first check if an edit is applicable (potentially /// computing info required to compute the actual edit). If it is applicable, /// and `should_compute_edit` is `true`, it then computes the actual edit. /// /// So, to implement the original assists workflow, we can first apply each edit /// with `should_compute_edit = false`, and then applying the selected edit /// again, with `should_compute_edit = true` this time. /// /// Note, however, that we don't actually use such two-phase logic at the /// moment, because the LSP API is pretty awkward in this place, and it's much /// easier to just compute the edit eagerly :-) #[derive(Debug)] pub(crate) struct AssistCtx<'a, DB> { pub(crate) db: &'a DB, pub(crate) frange: FileRange, source_file: SourceFile, should_compute_edit: bool, } impl<'a, DB> Clone for AssistCtx<'a, DB> { fn clone(&self) -> Self { AssistCtx { db: self.db, frange: self.frange, source_file: self.source_file.clone(), should_compute_edit: self.should_compute_edit, } } } impl<'a, DB: HirDatabase> AssistCtx<'a, DB> { pub(crate) fn with_ctx(db: &DB, frange: FileRange, should_compute_edit: bool, f: F) -> T where F: FnOnce(AssistCtx) -> T, { let parse = db.parse(frange.file_id); let ctx = AssistCtx { db, frange, source_file: parse.tree(), should_compute_edit }; f(ctx) } pub(crate) fn add_assist( self, id: AssistId, label: impl Into, f: impl FnOnce(&mut ActionBuilder), ) -> Option { let label = AssistLabel { label: label.into(), id }; assert!(label.label.chars().nth(0).unwrap().is_uppercase()); let assist = if self.should_compute_edit { let action = { let mut edit = ActionBuilder::default(); f(&mut edit); edit.build() }; Assist::Resolved { label, action, alternative_actions: Vec::default() } } else { Assist::Unresolved { label } }; Some(assist) } #[allow(dead_code)] // will be used for auto import assist with multiple actions pub(crate) fn add_assist_group( self, id: AssistId, label: impl Into, f: impl FnOnce() -> (ActionBuilder, Vec), ) -> Option { let label = AssistLabel { label: label.into(), id }; let assist = if self.should_compute_edit { let (action, alternative_actions) = f(); Assist::Resolved { label, action: action.build(), alternative_actions: alternative_actions .into_iter() .map(ActionBuilder::build) .collect(), } } else { Assist::Unresolved { label } }; Some(assist) } pub(crate) fn token_at_offset(&self) -> TokenAtOffset { self.source_file.syntax().token_at_offset(self.frange.range.start()) } pub(crate) fn find_token_at_offset(&self, kind: SyntaxKind) -> Option { self.token_at_offset().find(|it| it.kind() == kind) } pub(crate) fn find_node_at_offset(&self) -> Option { find_node_at_offset(self.source_file.syntax(), self.frange.range.start()) } pub(crate) fn covering_element(&self) -> SyntaxElement { find_covering_element(self.source_file.syntax(), self.frange.range) } pub(crate) fn source_analyzer( &self, node: &SyntaxNode, offset: Option, ) -> SourceAnalyzer { SourceAnalyzer::new(self.db, InFile::new(self.frange.file_id.into(), node), offset) } pub(crate) fn covering_node_for_range(&self, range: TextRange) -> SyntaxElement { find_covering_element(self.source_file.syntax(), range) } } #[derive(Default)] pub(crate) struct ActionBuilder { edit: TextEditBuilder, cursor_position: Option, target: Option, label: Option, } impl ActionBuilder { #[allow(dead_code)] /// Adds a custom label to the action, if it needs to be different from the assist label pub fn label(&mut self, label: impl Into) { self.label = Some(label.into()) } /// Replaces specified `range` of text with a given string. pub(crate) fn replace(&mut self, range: TextRange, replace_with: impl Into) { self.edit.replace(range, replace_with.into()) } /// Replaces specified `node` of text with a given string, reindenting the /// string to maintain `node`'s existing indent. // FIXME: remove in favor of ra_syntax::edit::IndentLevel::increase_indent pub(crate) fn replace_node_and_indent( &mut self, node: &SyntaxNode, replace_with: impl Into, ) { let mut replace_with = replace_with.into(); if let Some(indent) = leading_indent(node) { replace_with = reindent(&replace_with, &indent) } self.replace(node.text_range(), replace_with) } /// Remove specified `range` of text. #[allow(unused)] pub(crate) fn delete(&mut self, range: TextRange) { self.edit.delete(range) } /// Append specified `text` at the given `offset` pub(crate) fn insert(&mut self, offset: TextUnit, text: impl Into) { self.edit.insert(offset, text.into()) } /// Specify desired position of the cursor after the assist is applied. pub(crate) fn set_cursor(&mut self, offset: TextUnit) { self.cursor_position = Some(offset) } /// Specify that the assist should be active withing the `target` range. /// /// Target ranges are used to sort assists: the smaller the target range, /// the more specific assist is, and so it should be sorted first. pub(crate) fn target(&mut self, target: TextRange) { self.target = Some(target) } /// Get access to the raw `TextEditBuilder`. pub(crate) fn text_edit_builder(&mut self) -> &mut TextEditBuilder { &mut self.edit } pub(crate) fn replace_ast(&mut self, old: N, new: N) { algo::diff(old.syntax(), new.syntax()).into_text_edit(&mut self.edit) } fn build(self) -> AssistAction { AssistAction { edit: self.edit.finish(), cursor_position: self.cursor_position, target: self.target, label: self.label, } } }