//! This module defines `AssistCtx` -- the API surface that is exposed to assists. use hir::Semantics; use ra_db::FileRange; use ra_fmt::{leading_indent, reindent}; use ra_ide_db::RootDatabase; use ra_syntax::{ algo::{self, find_covering_element, find_node_at_offset}, AstNode, SourceFile, SyntaxElement, SyntaxKind, SyntaxNode, SyntaxToken, TextRange, TextSize, TokenAtOffset, }; use ra_text_edit::TextEditBuilder; use crate::{AssistAction, AssistFile, AssistId, AssistLabel, GroupLabel, ResolvedAssist}; use algo::SyntaxRewriter; #[derive(Clone, Debug)] pub(crate) struct Assist(pub(crate) Vec); #[derive(Clone, Debug)] pub(crate) struct AssistInfo { pub(crate) label: AssistLabel, pub(crate) group_label: Option, pub(crate) action: Option, } impl AssistInfo { fn new(label: AssistLabel) -> AssistInfo { AssistInfo { label, group_label: None, action: None } } fn resolved(self, action: AssistAction) -> AssistInfo { AssistInfo { action: Some(action), ..self } } fn with_group(self, group_label: GroupLabel) -> AssistInfo { AssistInfo { group_label: Some(group_label), ..self } } pub(crate) fn into_resolved(self) -> Option { let label = self.label; let group_label = self.group_label; self.action.map(|action| ResolvedAssist { label, group_label, action }) } } pub(crate) type AssistHandler = fn(AssistCtx) -> Option; /// `AssistCtx` allows to apply an assist or check if it could be applied. /// /// Assists use a somewhat over-engineered approach, given the current needs. The /// assists workflow consists of two phases. In the first phase, a user asks for /// the list of available assists. In the second phase, the user picks a /// particular assist and it gets applied. /// /// There are two peculiarities here: /// /// * first, we ideally avoid computing more things then necessary to answer /// "is assist applicable" in the first phase. /// * second, when we are applying assist, we don't have a guarantee that there /// weren't any changes between the point when user asked for assists and when /// they applied a particular assist. So, when applying assist, we need to do /// all the checks from scratch. /// /// To avoid repeating the same code twice for both "check" and "apply" /// functions, we use an approach reminiscent of that of Django's function based /// views dealing with forms. Each assist receives a runtime parameter, /// `should_compute_edit`. It first check if an edit is applicable (potentially /// computing info required to compute the actual edit). If it is applicable, /// and `should_compute_edit` is `true`, it then computes the actual edit. /// /// So, to implement the original assists workflow, we can first apply each edit /// with `should_compute_edit = false`, and then applying the selected edit /// again, with `should_compute_edit = true` this time. /// /// Note, however, that we don't actually use such two-phase logic at the /// moment, because the LSP API is pretty awkward in this place, and it's much /// easier to just compute the edit eagerly :-) #[derive(Clone)] pub(crate) struct AssistCtx<'a> { pub(crate) sema: &'a Semantics<'a, RootDatabase>, pub(crate) db: &'a RootDatabase, pub(crate) frange: FileRange, source_file: SourceFile, should_compute_edit: bool, } impl<'a> AssistCtx<'a> { pub fn new( sema: &'a Semantics<'a, RootDatabase>, frange: FileRange, should_compute_edit: bool, ) -> AssistCtx<'a> { let source_file = sema.parse(frange.file_id); AssistCtx { sema, db: sema.db, frange, source_file, should_compute_edit } } pub(crate) fn add_assist( self, id: AssistId, label: impl Into, f: impl FnOnce(&mut ActionBuilder), ) -> Option { let label = AssistLabel::new(id, label.into()); let mut info = AssistInfo::new(label); if self.should_compute_edit { let action = { let mut edit = ActionBuilder::new(&self); f(&mut edit); edit.build() }; info = info.resolved(action) }; Some(Assist(vec![info])) } pub(crate) fn add_assist_group(self, group_name: impl Into) -> AssistGroup<'a> { let group = GroupLabel(group_name.into()); AssistGroup { ctx: self, group, assists: Vec::new() } } pub(crate) fn token_at_offset(&self) -> TokenAtOffset { self.source_file.syntax().token_at_offset(self.frange.range.start()) } pub(crate) fn find_token_at_offset(&self, kind: SyntaxKind) -> Option { self.token_at_offset().find(|it| it.kind() == kind) } pub(crate) fn find_node_at_offset(&self) -> Option { find_node_at_offset(self.source_file.syntax(), self.frange.range.start()) } pub(crate) fn find_node_at_offset_with_descend(&self) -> Option { self.sema .find_node_at_offset_with_descend(self.source_file.syntax(), self.frange.range.start()) } pub(crate) fn covering_element(&self) -> SyntaxElement { find_covering_element(self.source_file.syntax(), self.frange.range) } pub(crate) fn covering_node_for_range(&self, range: TextRange) -> SyntaxElement { find_covering_element(self.source_file.syntax(), range) } } pub(crate) struct AssistGroup<'a> { ctx: AssistCtx<'a>, group: GroupLabel, assists: Vec, } impl<'a> AssistGroup<'a> { pub(crate) fn add_assist( &mut self, id: AssistId, label: impl Into, f: impl FnOnce(&mut ActionBuilder), ) { let label = AssistLabel::new(id, label.into()); let mut info = AssistInfo::new(label).with_group(self.group.clone()); if self.ctx.should_compute_edit { let action = { let mut edit = ActionBuilder::new(&self.ctx); f(&mut edit); edit.build() }; info = info.resolved(action) }; self.assists.push(info) } pub(crate) fn finish(self) -> Option { if self.assists.is_empty() { None } else { Some(Assist(self.assists)) } } } pub(crate) struct ActionBuilder<'a, 'b> { edit: TextEditBuilder, cursor_position: Option, target: Option, file: AssistFile, ctx: &'a AssistCtx<'b>, } impl<'a, 'b> ActionBuilder<'a, 'b> { fn new(ctx: &'a AssistCtx<'b>) -> Self { Self { edit: TextEditBuilder::default(), cursor_position: None, target: None, file: AssistFile::default(), ctx, } } pub(crate) fn ctx(&self) -> &AssistCtx<'b> { &self.ctx } /// Replaces specified `range` of text with a given string. pub(crate) fn replace(&mut self, range: TextRange, replace_with: impl Into) { self.edit.replace(range, replace_with.into()) } /// Replaces specified `node` of text with a given string, reindenting the /// string to maintain `node`'s existing indent. // FIXME: remove in favor of ra_syntax::edit::IndentLevel::increase_indent pub(crate) fn replace_node_and_indent( &mut self, node: &SyntaxNode, replace_with: impl Into, ) { let mut replace_with = replace_with.into(); if let Some(indent) = leading_indent(node) { replace_with = reindent(&replace_with, &indent) } self.replace(node.text_range(), replace_with) } /// Remove specified `range` of text. #[allow(unused)] pub(crate) fn delete(&mut self, range: TextRange) { self.edit.delete(range) } /// Append specified `text` at the given `offset` pub(crate) fn insert(&mut self, offset: TextSize, text: impl Into) { self.edit.insert(offset, text.into()) } /// Specify desired position of the cursor after the assist is applied. pub(crate) fn set_cursor(&mut self, offset: TextSize) { self.cursor_position = Some(offset) } /// Specify that the assist should be active withing the `target` range. /// /// Target ranges are used to sort assists: the smaller the target range, /// the more specific assist is, and so it should be sorted first. pub(crate) fn target(&mut self, target: TextRange) { self.target = Some(target) } /// Get access to the raw `TextEditBuilder`. pub(crate) fn text_edit_builder(&mut self) -> &mut TextEditBuilder { &mut self.edit } pub(crate) fn replace_ast(&mut self, old: N, new: N) { algo::diff(old.syntax(), new.syntax()).into_text_edit(&mut self.edit) } pub(crate) fn rewrite(&mut self, rewriter: SyntaxRewriter) { let node = rewriter.rewrite_root().unwrap(); let new = rewriter.rewrite(&node); algo::diff(&node, &new).into_text_edit(&mut self.edit) } pub(crate) fn set_file(&mut self, assist_file: AssistFile) { self.file = assist_file } fn build(self) -> AssistAction { AssistAction { edit: self.edit.finish(), cursor_position: self.cursor_position, target: self.target, file: self.file, } } }