//! This module is responsible for resolving paths within rules. use crate::errors::error; use crate::{parsing, SsrError}; use parsing::Placeholder; use ra_db::FilePosition; use ra_syntax::{ast, SmolStr, SyntaxKind, SyntaxNode, SyntaxToken}; use rustc_hash::{FxHashMap, FxHashSet}; use test_utils::mark; pub(crate) struct ResolutionScope<'db> { scope: hir::SemanticsScope<'db>, hygiene: hir::Hygiene, node: SyntaxNode, } pub(crate) struct ResolvedRule { pub(crate) pattern: ResolvedPattern, pub(crate) template: Option, pub(crate) index: usize, } pub(crate) struct ResolvedPattern { pub(crate) placeholders_by_stand_in: FxHashMap, pub(crate) node: SyntaxNode, // Paths in `node` that we've resolved. pub(crate) resolved_paths: FxHashMap, pub(crate) ufcs_function_calls: FxHashMap, pub(crate) contains_self: bool, } pub(crate) struct ResolvedPath { pub(crate) resolution: hir::PathResolution, /// The depth of the ast::Path that was resolved within the pattern. pub(crate) depth: u32, } impl ResolvedRule { pub(crate) fn new( rule: parsing::ParsedRule, resolution_scope: &ResolutionScope, index: usize, ) -> Result { let resolver = Resolver { resolution_scope, placeholders_by_stand_in: rule.placeholders_by_stand_in }; let resolved_template = if let Some(template) = rule.template { Some(resolver.resolve_pattern_tree(template)?) } else { None }; Ok(ResolvedRule { pattern: resolver.resolve_pattern_tree(rule.pattern)?, template: resolved_template, index, }) } pub(crate) fn get_placeholder(&self, token: &SyntaxToken) -> Option<&Placeholder> { if token.kind() != SyntaxKind::IDENT { return None; } self.pattern.placeholders_by_stand_in.get(token.text()) } } struct Resolver<'a, 'db> { resolution_scope: &'a ResolutionScope<'db>, placeholders_by_stand_in: FxHashMap, } impl Resolver<'_, '_> { fn resolve_pattern_tree(&self, pattern: SyntaxNode) -> Result { use ra_syntax::{SyntaxElement, T}; let mut resolved_paths = FxHashMap::default(); self.resolve(pattern.clone(), 0, &mut resolved_paths)?; let ufcs_function_calls = resolved_paths .iter() .filter_map(|(path_node, resolved)| { if let Some(grandparent) = path_node.parent().and_then(|parent| parent.parent()) { if grandparent.kind() == SyntaxKind::CALL_EXPR { if let hir::PathResolution::AssocItem(hir::AssocItem::Function(function)) = &resolved.resolution { return Some((grandparent, *function)); } } } None }) .collect(); let contains_self = pattern.descendants_with_tokens().any(|node_or_token| match node_or_token { SyntaxElement::Token(t) => t.kind() == T![self], _ => false, }); Ok(ResolvedPattern { node: pattern, resolved_paths, placeholders_by_stand_in: self.placeholders_by_stand_in.clone(), ufcs_function_calls, contains_self, }) } fn resolve( &self, node: SyntaxNode, depth: u32, resolved_paths: &mut FxHashMap, ) -> Result<(), SsrError> { use ra_syntax::ast::AstNode; if let Some(path) = ast::Path::cast(node.clone()) { if is_self(&path) { // Self cannot be resolved like other paths. return Ok(()); } // Check if this is an appropriate place in the path to resolve. If the path is // something like `a::B::::c` then we want to resolve `a::B`. If the path contains // a placeholder. e.g. `a::$b::c` then we want to resolve `a`. if !path_contains_type_arguments(path.qualifier()) && !self.path_contains_placeholder(&path) { let resolution = self .resolution_scope .resolve_path(&path) .ok_or_else(|| error!("Failed to resolve path `{}`", node.text()))?; resolved_paths.insert(node, ResolvedPath { resolution, depth }); return Ok(()); } } for node in node.children() { self.resolve(node, depth + 1, resolved_paths)?; } Ok(()) } /// Returns whether `path` contains a placeholder, but ignores any placeholders within type /// arguments. fn path_contains_placeholder(&self, path: &ast::Path) -> bool { if let Some(segment) = path.segment() { if let Some(name_ref) = segment.name_ref() { if self.placeholders_by_stand_in.contains_key(name_ref.text()) { return true; } } } if let Some(qualifier) = path.qualifier() { return self.path_contains_placeholder(&qualifier); } false } } impl<'db> ResolutionScope<'db> { pub(crate) fn new( sema: &hir::Semantics<'db, ra_ide_db::RootDatabase>, resolve_context: FilePosition, ) -> ResolutionScope<'db> { use ra_syntax::ast::AstNode; let file = sema.parse(resolve_context.file_id); // Find a node at the requested position, falling back to the whole file. let node = file .syntax() .token_at_offset(resolve_context.offset) .left_biased() .map(|token| token.parent()) .unwrap_or_else(|| file.syntax().clone()); let node = pick_node_for_resolution(node); let scope = sema.scope(&node); ResolutionScope { scope, hygiene: hir::Hygiene::new(sema.db, resolve_context.file_id.into()), node, } } /// Returns the function in which SSR was invoked, if any. pub(crate) fn current_function(&self) -> Option { let mut node = self.node.clone(); loop { if node.kind() == SyntaxKind::FN { return Some(node); } node = node.parent()?; } } fn resolve_path(&self, path: &ast::Path) -> Option { let hir_path = hir::Path::from_src(path.clone(), &self.hygiene)?; // First try resolving the whole path. This will work for things like // `std::collections::HashMap`, but will fail for things like // `std::collections::HashMap::new`. if let Some(resolution) = self.scope.resolve_hir_path(&hir_path) { return Some(resolution); } // Resolution failed, try resolving the qualifier (e.g. `std::collections::HashMap` and if // that succeeds, then iterate through the candidates on the resolved type with the provided // name. let resolved_qualifier = self.scope.resolve_hir_path_qualifier(&hir_path.qualifier()?)?; if let hir::PathResolution::Def(hir::ModuleDef::Adt(adt)) = resolved_qualifier { adt.ty(self.scope.db).iterate_path_candidates( self.scope.db, self.scope.module()?.krate(), &FxHashSet::default(), Some(hir_path.segments().last()?.name), |_ty, assoc_item| Some(hir::PathResolution::AssocItem(assoc_item)), ) } else { None } } } fn is_self(path: &ast::Path) -> bool { path.segment().map(|segment| segment.self_token().is_some()).unwrap_or(false) } /// Returns a suitable node for resolving paths in the current scope. If we create a scope based on /// a statement node, then we can't resolve local variables that were defined in the current scope /// (only in parent scopes). So we find another node, ideally a child of the statement where local /// variable resolution is permitted. fn pick_node_for_resolution(node: SyntaxNode) -> SyntaxNode { match node.kind() { SyntaxKind::EXPR_STMT => { if let Some(n) = node.first_child() { mark::hit!(cursor_after_semicolon); return n; } } SyntaxKind::LET_STMT | SyntaxKind::IDENT_PAT => { if let Some(next) = node.next_sibling() { return pick_node_for_resolution(next); } } SyntaxKind::NAME => { if let Some(parent) = node.parent() { return pick_node_for_resolution(parent); } } _ => {} } node } /// Returns whether `path` or any of its qualifiers contains type arguments. fn path_contains_type_arguments(path: Option) -> bool { if let Some(path) = path { if let Some(segment) = path.segment() { if segment.generic_arg_list().is_some() { mark::hit!(type_arguments_within_path); return true; } } return path_contains_type_arguments(path.qualifier()); } false }