//! Flycheck provides the functionality needed to run `cargo check` or //! another compatible command (f.x. clippy) in a background thread and provide //! LSP diagnostics based on the output of the command. use std::{ fmt, io, process::{ChildStderr, ChildStdout, Command, Stdio}, time::Duration, }; use crossbeam_channel::{never, select, unbounded, Receiver, Sender}; use paths::AbsPathBuf; use serde::Deserialize; use stdx::{process::streaming_output, JodChild}; pub use cargo_metadata::diagnostic::{ Applicability, Diagnostic, DiagnosticCode, DiagnosticLevel, DiagnosticSpan, DiagnosticSpanMacroExpansion, }; #[derive(Clone, Debug, PartialEq, Eq)] pub enum FlycheckConfig { CargoCommand { command: String, target_triple: Option, all_targets: bool, no_default_features: bool, all_features: bool, features: Vec, extra_args: Vec, }, CustomCommand { command: String, args: Vec, }, } impl fmt::Display for FlycheckConfig { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { FlycheckConfig::CargoCommand { command, .. } => write!(f, "cargo {}", command), FlycheckConfig::CustomCommand { command, args } => { write!(f, "{} {}", command, args.join(" ")) } } } } /// Flycheck wraps the shared state and communication machinery used for /// running `cargo check` (or other compatible command) and providing /// diagnostics based on the output. /// The spawned thread is shut down when this struct is dropped. #[derive(Debug)] pub struct FlycheckHandle { // XXX: drop order is significant sender: Sender, _thread: jod_thread::JoinHandle, } impl FlycheckHandle { pub fn spawn( id: usize, sender: Box, config: FlycheckConfig, workspace_root: AbsPathBuf, ) -> FlycheckHandle { let actor = FlycheckActor::new(id, sender, config, workspace_root); let (sender, receiver) = unbounded::(); let thread = jod_thread::Builder::new() .name("Flycheck".to_owned()) .spawn(move || actor.run(receiver)) .expect("failed to spawn thread"); FlycheckHandle { sender, _thread: thread } } /// Schedule a re-start of the cargo check worker. pub fn update(&self) { self.sender.send(Restart).unwrap(); } } pub enum Message { /// Request adding a diagnostic with fixes included to a file AddDiagnostic { workspace_root: AbsPathBuf, diagnostic: Diagnostic }, /// Request check progress notification to client Progress { /// Flycheck instance ID id: usize, progress: Progress, }, } impl fmt::Debug for Message { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { Message::AddDiagnostic { workspace_root, diagnostic } => f .debug_struct("AddDiagnostic") .field("workspace_root", workspace_root) .field("diagnostic_code", &diagnostic.code.as_ref().map(|it| &it.code)) .finish(), Message::Progress { id, progress } => { f.debug_struct("Progress").field("id", id).field("progress", progress).finish() } } } } #[derive(Debug)] pub enum Progress { DidStart, DidCheckCrate(String), DidFinish(io::Result<()>), DidCancel, } struct Restart; struct FlycheckActor { id: usize, sender: Box, config: FlycheckConfig, workspace_root: AbsPathBuf, /// CargoHandle exists to wrap around the communication needed to be able to /// run `cargo check` without blocking. Currently the Rust standard library /// doesn't provide a way to read sub-process output without blocking, so we /// have to wrap sub-processes output handling in a thread and pass messages /// back over a channel. cargo_handle: Option, } enum Event { Restart(Restart), CheckEvent(Option), } impl FlycheckActor { fn new( id: usize, sender: Box, config: FlycheckConfig, workspace_root: AbsPathBuf, ) -> FlycheckActor { FlycheckActor { id, sender, config, workspace_root, cargo_handle: None } } fn progress(&self, progress: Progress) { self.send(Message::Progress { id: self.id, progress }); } fn next_event(&self, inbox: &Receiver) -> Option { let check_chan = self.cargo_handle.as_ref().map(|cargo| &cargo.receiver); select! { recv(inbox) -> msg => msg.ok().map(Event::Restart), recv(check_chan.unwrap_or(&never())) -> msg => Some(Event::CheckEvent(msg.ok())), } } fn run(mut self, inbox: Receiver) { while let Some(event) = self.next_event(&inbox) { match event { Event::Restart(Restart) => { // Drop and cancel the previously spawned process self.cargo_handle.take(); while let Ok(Restart) = inbox.recv_timeout(Duration::from_millis(50)) {} self.cancel_check_process(); let command = self.check_command(); let command_f = format!("restart flycheck {command:?}"); match CargoHandle::spawn(command) { Ok(cargo_handle) => { tracing::info!("{}", command_f); self.cargo_handle = Some(cargo_handle); self.progress(Progress::DidStart); } Err(e) => { tracing::error!("{command_f} failed: {e:?}",); } } } Event::CheckEvent(None) => { // Watcher finished, replace it with a never channel to // avoid busy-waiting. let cargo_handle = self.cargo_handle.take().unwrap(); let res = cargo_handle.join(); if res.is_err() { tracing::error!( "Flycheck failed to run the following command: {:?}", self.check_command() ); } self.progress(Progress::DidFinish(res)); } Event::CheckEvent(Some(message)) => match message { CargoMessage::CompilerArtifact(msg) => { self.progress(Progress::DidCheckCrate(msg.target.name)); } CargoMessage::Diagnostic(msg) => { self.send(Message::AddDiagnostic { workspace_root: self.workspace_root.clone(), diagnostic: msg, }); } }, } } // If we rerun the thread, we need to discard the previous check results first self.cancel_check_process(); } fn cancel_check_process(&mut self) { if self.cargo_handle.take().is_some() { self.progress(Progress::DidCancel); } } fn check_command(&self) -> Command { let mut cmd = match &self.config { FlycheckConfig::CargoCommand { command, target_triple, no_default_features, all_targets, all_features, extra_args, features, } => { let mut cmd = Command::new(toolchain::cargo()); cmd.arg(command); cmd.current_dir(&self.workspace_root); cmd.args(&["--workspace", "--message-format=json", "--manifest-path"]) .arg(self.workspace_root.join("Cargo.toml").as_os_str()); if let Some(target) = target_triple { cmd.args(&["--target", target.as_str()]); } if *all_targets { cmd.arg("--all-targets"); } if *all_features { cmd.arg("--all-features"); } else { if *no_default_features { cmd.arg("--no-default-features"); } if !features.is_empty() { cmd.arg("--features"); cmd.arg(features.join(" ")); } } cmd.args(extra_args); cmd } FlycheckConfig::CustomCommand { command, args } => { let mut cmd = Command::new(command); cmd.args(args); cmd } }; cmd.current_dir(&self.workspace_root); cmd } fn send(&self, check_task: Message) { (self.sender)(check_task); } } /// A handle to a cargo process used for fly-checking. struct CargoHandle { /// The handle to the actual cargo process. As we cannot cancel directly from with /// a read syscall dropping and therefor terminating the process is our best option. child: JodChild, thread: jod_thread::JoinHandle>, receiver: Receiver, } impl CargoHandle { fn spawn(mut command: Command) -> std::io::Result { command.stdout(Stdio::piped()).stderr(Stdio::piped()).stdin(Stdio::null()); let mut child = JodChild::spawn(command)?; let stdout = child.stdout.take().unwrap(); let stderr = child.stderr.take().unwrap(); let (sender, receiver) = unbounded(); let actor = CargoActor::new(sender, stdout, stderr); let thread = jod_thread::Builder::new() .name("CargoHandle".to_owned()) .spawn(move || actor.run()) .expect("failed to spawn thread"); Ok(CargoHandle { child, thread, receiver }) } fn join(self) -> io::Result<()> { let exit_status = self.child.wait()?; let (read_at_least_one_message, error) = self.thread.join()?; if read_at_least_one_message || exit_status.success() { Ok(()) } else { Err(io::Error::new(io::ErrorKind::Other, format!( "Cargo watcher failed, the command produced no valid metadata (exit code: {:?}):\n{}", exit_status, error ))) } } } struct CargoActor { sender: Sender, stdout: ChildStdout, stderr: ChildStderr, } impl CargoActor { fn new(sender: Sender, stdout: ChildStdout, stderr: ChildStderr) -> CargoActor { CargoActor { sender, stdout, stderr } } fn run(self) -> io::Result<(bool, String)> { // We manually read a line at a time, instead of using serde's // stream deserializers, because the deserializer cannot recover // from an error, resulting in it getting stuck, because we try to // be resilient against failures. // // Because cargo only outputs one JSON object per line, we can // simply skip a line if it doesn't parse, which just ignores any // erroneus output. let mut error = String::new(); let mut read_at_least_one_message = false; let output = streaming_output( self.stdout, self.stderr, &mut |line| { read_at_least_one_message = true; // Try to deserialize a message from Cargo or Rustc. let mut deserializer = serde_json::Deserializer::from_str(line); deserializer.disable_recursion_limit(); if let Ok(message) = JsonMessage::deserialize(&mut deserializer) { match message { // Skip certain kinds of messages to only spend time on what's useful JsonMessage::Cargo(message) => match message { cargo_metadata::Message::CompilerArtifact(artifact) if !artifact.fresh => { self.sender.send(CargoMessage::CompilerArtifact(artifact)).unwrap(); } cargo_metadata::Message::CompilerMessage(msg) => { self.sender.send(CargoMessage::Diagnostic(msg.message)).unwrap(); } _ => (), }, JsonMessage::Rustc(message) => { self.sender.send(CargoMessage::Diagnostic(message)).unwrap(); } } } }, &mut |line| { error.push_str(line); error.push('\n'); }, ); match output { Ok(_) => Ok((read_at_least_one_message, error)), Err(e) => Err(io::Error::new(e.kind(), format!("{:?}: {}", e, error))), } } } enum CargoMessage { CompilerArtifact(cargo_metadata::Artifact), Diagnostic(Diagnostic), } #[derive(Deserialize)] #[serde(untagged)] enum JsonMessage { Cargo(cargo_metadata::Message), Rustc(Diagnostic), }