use std::cell::RefCell; use hir::{ diagnostics::{AstDiagnostic, Diagnostic as _, DiagnosticSink}, source_binder, }; use itertools::Itertools; use ra_assists::ast_editor::{AstBuilder, AstEditor}; use ra_db::SourceDatabase; use ra_prof::profile; use ra_syntax::{ ast::{self, AstNode, RecordField}, Location, SyntaxNode, TextRange, T, }; use ra_text_edit::{TextEdit, TextEditBuilder}; use crate::{db::RootDatabase, Diagnostic, FileId, FileSystemEdit, SourceChange, SourceFileEdit}; #[derive(Debug, Copy, Clone)] pub enum Severity { Error, WeakWarning, } pub(crate) fn diagnostics(db: &RootDatabase, file_id: FileId) -> Vec { let _p = profile("diagnostics"); let parse = db.parse(file_id); let mut res = Vec::new(); res.extend(parse.errors().iter().map(|err| Diagnostic { range: location_to_range(err.location()), message: format!("Syntax Error: {}", err), severity: Severity::Error, fix: None, })); for node in parse.tree().syntax().descendants() { check_unnecessary_braces_in_use_statement(&mut res, file_id, &node); check_struct_shorthand_initialization(&mut res, file_id, &node); } let res = RefCell::new(res); let mut sink = DiagnosticSink::new(|d| { res.borrow_mut().push(Diagnostic { message: d.message(), range: d.highlight_range(), severity: Severity::Error, fix: None, }) }) .on::(|d| { let source_root = db.file_source_root(d.source().file_id.original_file(db)); let create_file = FileSystemEdit::CreateFile { source_root, path: d.candidate.clone() }; let fix = SourceChange::file_system_edit("create module", create_file); res.borrow_mut().push(Diagnostic { range: d.highlight_range(), message: d.message(), severity: Severity::Error, fix: Some(fix), }) }) .on::(|d| { let node = d.ast(db); let mut ast_editor = AstEditor::new(node); for f in d.missed_fields.iter() { ast_editor.append_field(&AstBuilder::::from_name(f)); } let mut builder = TextEditBuilder::default(); ast_editor.into_text_edit(&mut builder); let fix = SourceChange::source_file_edit_from("fill struct fields", file_id, builder.finish()); res.borrow_mut().push(Diagnostic { range: d.highlight_range(), message: d.message(), severity: Severity::Error, fix: Some(fix), }) }) .on::(|d| { let node = d.ast(db); let mut builder = TextEditBuilder::default(); let replacement = format!("Ok({})", node.syntax().text()); builder.replace(node.syntax().text_range(), replacement); let fix = SourceChange::source_file_edit_from("wrap with ok", file_id, builder.finish()); res.borrow_mut().push(Diagnostic { range: d.highlight_range(), message: d.message(), severity: Severity::Error, fix: Some(fix), }) }); if let Some(m) = source_binder::module_from_file_id(db, file_id) { m.diagnostics(db, &mut sink); }; drop(sink); res.into_inner() } fn location_to_range(location: Location) -> TextRange { match location { Location::Offset(offset) => TextRange::offset_len(offset, 1.into()), Location::Range(range) => range, } } fn check_unnecessary_braces_in_use_statement( acc: &mut Vec, file_id: FileId, node: &SyntaxNode, ) -> Option<()> { let use_tree_list = ast::UseTreeList::cast(node.clone())?; if let Some((single_use_tree,)) = use_tree_list.use_trees().collect_tuple() { let range = use_tree_list.syntax().text_range(); let edit = text_edit_for_remove_unnecessary_braces_with_self_in_use_statement(&single_use_tree) .unwrap_or_else(|| { let to_replace = single_use_tree.syntax().text().to_string(); let mut edit_builder = TextEditBuilder::default(); edit_builder.delete(range); edit_builder.insert(range.start(), to_replace); edit_builder.finish() }); acc.push(Diagnostic { range, message: "Unnecessary braces in use statement".to_string(), severity: Severity::WeakWarning, fix: Some(SourceChange::source_file_edit( "Remove unnecessary braces", SourceFileEdit { file_id, edit }, )), }); } Some(()) } fn text_edit_for_remove_unnecessary_braces_with_self_in_use_statement( single_use_tree: &ast::UseTree, ) -> Option { let use_tree_list_node = single_use_tree.syntax().parent()?; if single_use_tree.path()?.segment()?.syntax().first_child_or_token()?.kind() == T![self] { let start = use_tree_list_node.prev_sibling_or_token()?.text_range().start(); let end = use_tree_list_node.text_range().end(); let range = TextRange::from_to(start, end); let mut edit_builder = TextEditBuilder::default(); edit_builder.delete(range); return Some(edit_builder.finish()); } None } fn check_struct_shorthand_initialization( acc: &mut Vec, file_id: FileId, node: &SyntaxNode, ) -> Option<()> { let record_lit = ast::RecordLit::cast(node.clone())?; let record_field_list = record_lit.record_field_list()?; for record_field in record_field_list.fields() { if let (Some(name_ref), Some(expr)) = (record_field.name_ref(), record_field.expr()) { let field_name = name_ref.syntax().text().to_string(); let field_expr = expr.syntax().text().to_string(); if field_name == field_expr { let mut edit_builder = TextEditBuilder::default(); edit_builder.delete(record_field.syntax().text_range()); edit_builder.insert(record_field.syntax().text_range().start(), field_name); let edit = edit_builder.finish(); acc.push(Diagnostic { range: record_field.syntax().text_range(), message: "Shorthand struct initialization".to_string(), severity: Severity::WeakWarning, fix: Some(SourceChange::source_file_edit( "use struct shorthand initialization", SourceFileEdit { file_id, edit }, )), }); } } } Some(()) } #[cfg(test)] mod tests { use insta::assert_debug_snapshot_matches; use ra_syntax::SourceFile; use test_utils::assert_eq_text; use crate::mock_analysis::{fixture_with_target_file, single_file}; use super::*; type DiagnosticChecker = fn(&mut Vec, FileId, &SyntaxNode) -> Option<()>; fn check_not_applicable(code: &str, func: DiagnosticChecker) { let parse = SourceFile::parse(code); let mut diagnostics = Vec::new(); for node in parse.tree().syntax().descendants() { func(&mut diagnostics, FileId(0), &node); } assert!(diagnostics.is_empty()); } fn check_apply(before: &str, after: &str, func: DiagnosticChecker) { let parse = SourceFile::parse(before); let mut diagnostics = Vec::new(); for node in parse.tree().syntax().descendants() { func(&mut diagnostics, FileId(0), &node); } let diagnostic = diagnostics.pop().unwrap_or_else(|| panic!("no diagnostics for:\n{}\n", before)); let mut fix = diagnostic.fix.unwrap(); let edit = fix.source_file_edits.pop().unwrap().edit; let actual = edit.apply(&before); assert_eq_text!(after, &actual); } fn check_apply_diagnostic_fix_for_target_file(target_file: &str, fixture: &str, after: &str) { let (analysis, file_id, target_file_contents) = fixture_with_target_file(fixture, target_file); let diagnostic = analysis.diagnostics(file_id).unwrap().pop().unwrap(); let mut fix = diagnostic.fix.unwrap(); let edit = fix.source_file_edits.pop().unwrap().edit; let actual = edit.apply(&target_file_contents); assert_eq_text!(after, &actual); } fn check_apply_diagnostic_fix(before: &str, after: &str) { let (analysis, file_id) = single_file(before); let diagnostic = analysis.diagnostics(file_id).unwrap().pop().unwrap(); let mut fix = diagnostic.fix.unwrap(); let edit = fix.source_file_edits.pop().unwrap().edit; let actual = edit.apply(&before); assert_eq_text!(after, &actual); } fn check_no_diagnostic_for_target_file(target_file: &str, fixture: &str) { let (analysis, file_id, _) = fixture_with_target_file(fixture, target_file); let diagnostics = analysis.diagnostics(file_id).unwrap(); assert_eq!(diagnostics.len(), 0); } fn check_no_diagnostic(content: &str) { let (analysis, file_id) = single_file(content); let diagnostics = analysis.diagnostics(file_id).unwrap(); assert_eq!(diagnostics.len(), 0); } #[test] fn test_wrap_return_type() { let before = r#" //- /main.rs use std::{string::String, result::Result::{self, Ok, Err}}; fn div(x: i32, y: i32) -> Result { if y == 0 { return Err("div by zero".into()); } x / y } //- /std/lib.rs pub mod string { pub struct String { } } pub mod result { pub enum Result { Ok(T), Err(E) } } "#; // The formatting here is a bit odd due to how the parse_fixture function works in test_utils - // it strips empty lines and leading whitespace. The important part of this test is that the final // `x / y` expr is now wrapped in `Ok(..)` let after = r#"use std::{string::String, result::Result::{self, Ok, Err}}; fn div(x: i32, y: i32) -> Result { if y == 0 { return Err("div by zero".into()); } Ok(x / y) } "#; check_apply_diagnostic_fix_for_target_file("/main.rs", before, after); } #[test] fn test_wrap_return_type_handles_type_aliases() { let before = r#" //- /main.rs use std::{string::String, result::Result::{self, Ok, Err}}; type MyResult = Result; fn div(x: i32, y: i32) -> MyResult { if y == 0 { return Err("div by zero".into()); } x / y } //- /std/lib.rs pub mod string { pub struct String { } } pub mod result { pub enum Result { Ok(T), Err(E) } } "#; // The formatting here is a bit odd due to how the parse_fixture function works in test_utils - // it strips empty lines and leading whitespace. The important part of this test is that the final // `x / y` expr is now wrapped in `Ok(..)` let after = r#"use std::{string::String, result::Result::{self, Ok, Err}}; type MyResult = Result; fn div(x: i32, y: i32) -> MyResult { if y == 0 { return Err("div by zero".into()); } Ok(x / y) } "#; check_apply_diagnostic_fix_for_target_file("/main.rs", before, after); } #[test] fn test_wrap_return_type_not_applicable() { let content = r#" //- /main.rs use std::{string::String, result::Result::{self, Ok, Err}}; fn foo() -> Result { 0 } //- /std/lib.rs pub mod string { pub struct String { } } pub mod result { pub enum Result { Ok(T), Err(E) } } "#; check_no_diagnostic_for_target_file("/main.rs", content); } #[test] fn test_fill_struct_fields_empty() { let before = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let s = TestStruct{}; } "; let after = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let s = TestStruct{ one: (), two: ()}; } "; check_apply_diagnostic_fix(before, after); } #[test] fn test_fill_struct_fields_partial() { let before = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let s = TestStruct{ two: 2 }; } "; let after = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let s = TestStruct{ two: 2, one: () }; } "; check_apply_diagnostic_fix(before, after); } #[test] fn test_fill_struct_fields_no_diagnostic() { let content = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let one = 1; let s = TestStruct{ one, two: 2 }; } "; check_no_diagnostic(content); } #[test] fn test_fill_struct_fields_no_diagnostic_on_spread() { let content = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let one = 1; let s = TestStruct{ ..a }; } "; check_no_diagnostic(content); } #[test] fn test_unresolved_module_diagnostic() { let (analysis, file_id) = single_file("mod foo;"); let diagnostics = analysis.diagnostics(file_id).unwrap(); assert_debug_snapshot_matches!(diagnostics, @r###" ⋮[ ⋮ Diagnostic { ⋮ message: "unresolved module", ⋮ range: [0; 8), ⋮ fix: Some( ⋮ SourceChange { ⋮ label: "create module", ⋮ source_file_edits: [], ⋮ file_system_edits: [ ⋮ CreateFile { ⋮ source_root: SourceRootId( ⋮ 0, ⋮ ), ⋮ path: "foo.rs", ⋮ }, ⋮ ], ⋮ cursor_position: None, ⋮ }, ⋮ ), ⋮ severity: Error, ⋮ }, ⋮] "###); } #[test] fn test_check_unnecessary_braces_in_use_statement() { check_not_applicable( " use a; use a::{c, d::e}; ", check_unnecessary_braces_in_use_statement, ); check_apply("use {b};", "use b;", check_unnecessary_braces_in_use_statement); check_apply("use a::{c};", "use a::c;", check_unnecessary_braces_in_use_statement); check_apply("use a::{self};", "use a;", check_unnecessary_braces_in_use_statement); check_apply( "use a::{c, d::{e}};", "use a::{c, d::e};", check_unnecessary_braces_in_use_statement, ); } #[test] fn test_check_struct_shorthand_initialization() { check_not_applicable( r#" struct A { a: &'static str } fn main() { A { a: "hello" } } "#, check_struct_shorthand_initialization, ); check_apply( r#" struct A { a: &'static str } fn main() { let a = "haha"; A { a: a } } "#, r#" struct A { a: &'static str } fn main() { let a = "haha"; A { a } } "#, check_struct_shorthand_initialization, ); check_apply( r#" struct A { a: &'static str, b: &'static str } fn main() { let a = "haha"; let b = "bb"; A { a: a, b } } "#, r#" struct A { a: &'static str, b: &'static str } fn main() { let a = "haha"; let b = "bb"; A { a, b } } "#, check_struct_shorthand_initialization, ); } }