//! Methods for lowering the HIR to types. There are two main cases here: //! //! - Lowering a type reference like `&usize` or `Option` to a //! type: The entry point for this is `Ty::from_hir`. //! - Building the type for an item: This happens through the `type_for_def` query. //! //! This usually involves resolving names, collecting generic arguments etc. use std::sync::Arc; use crate::{ Function, Struct, StructField, Enum, EnumVariant, Path, Name, ModuleDef, Type, HirDatabase, type_ref::TypeRef, name::KnownName, nameres::Namespace, resolve::{Resolver, Resolution}, path::{ PathSegment, GenericArg}, generics::GenericParams, adt::VariantDef, }; use super::{Ty, primitive, FnSig, Substs}; impl Ty { pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self { match type_ref { TypeRef::Never => Ty::Never, TypeRef::Tuple(inner) => { let inner_tys = inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::>(); Ty::Tuple(inner_tys.into()) } TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path), TypeRef::RawPtr(inner, mutability) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::RawPtr(Arc::new(inner_ty), *mutability) } TypeRef::Array(inner) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::Array(Arc::new(inner_ty)) } TypeRef::Slice(inner) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::Slice(Arc::new(inner_ty)) } TypeRef::Reference(inner, mutability) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::Ref(Arc::new(inner_ty), *mutability) } TypeRef::Placeholder => Ty::Unknown, TypeRef::Fn(params) => { let mut inner_tys = params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::>(); let return_ty = inner_tys.pop().expect("TypeRef::Fn should always have at least return type"); let sig = FnSig { input: inner_tys, output: return_ty }; Ty::FnPtr(Arc::new(sig)) } TypeRef::Error => Ty::Unknown, } } pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Self { if let Some(name) = path.as_ident() { // TODO handle primitive type names in resolver as well? if let Some(int_ty) = primitive::UncertainIntTy::from_name(name) { return Ty::Int(int_ty); } else if let Some(float_ty) = primitive::UncertainFloatTy::from_name(name) { return Ty::Float(float_ty); } else if let Some(known) = name.as_known_name() { match known { KnownName::Bool => return Ty::Bool, KnownName::Char => return Ty::Char, KnownName::Str => return Ty::Str, _ => {} } } } // Resolve the path (in type namespace) let resolution = resolver.resolve_path(db, path).take_types(); let def = match resolution { Some(Resolution::Def(def)) => def, Some(Resolution::LocalBinding(..)) => { // this should never happen panic!("path resolved to local binding in type ns"); } Some(Resolution::GenericParam(idx)) => { return Ty::Param { idx, // TODO: maybe return name in resolution? name: path .as_ident() .expect("generic param should be single-segment path") .clone(), }; } Some(Resolution::SelfType(impl_block)) => { return impl_block.target_ty(db); } None => return Ty::Unknown, }; let typable: TypableDef = match def.into() { None => return Ty::Unknown, Some(it) => it, }; let ty = db.type_for_def(typable, Namespace::Types); let substs = Ty::substs_from_path(db, resolver, path, typable); ty.subst(&substs) } pub(super) fn substs_from_path_segment( db: &impl HirDatabase, resolver: &Resolver, segment: &PathSegment, resolved: TypableDef, ) -> Substs { let mut substs = Vec::new(); let def_generics = match resolved { TypableDef::Function(func) => func.generic_params(db), TypableDef::Struct(s) => s.generic_params(db), TypableDef::Enum(e) => e.generic_params(db), TypableDef::EnumVariant(var) => var.parent_enum(db).generic_params(db), TypableDef::Type(t) => t.generic_params(db), }; let parent_param_count = def_generics.count_parent_params(); substs.extend((0..parent_param_count).map(|_| Ty::Unknown)); if let Some(generic_args) = &segment.args_and_bindings { // if args are provided, it should be all of them, but we can't rely on that let param_count = def_generics.params.len(); for arg in generic_args.args.iter().take(param_count) { match arg { GenericArg::Type(type_ref) => { let ty = Ty::from_hir(db, resolver, type_ref); substs.push(ty); } } } } // add placeholders for args that were not provided // TODO: handle defaults let supplied_params = substs.len(); for _ in supplied_params..def_generics.count_params_including_parent() { substs.push(Ty::Unknown); } assert_eq!(substs.len(), def_generics.count_params_including_parent()); Substs(substs.into()) } /// Collect generic arguments from a path into a `Substs`. See also /// `create_substs_for_ast_path` and `def_to_ty` in rustc. pub(super) fn substs_from_path( db: &impl HirDatabase, resolver: &Resolver, path: &Path, resolved: TypableDef, ) -> Substs { let last = path.segments.last().expect("path should have at least one segment"); let segment = match resolved { TypableDef::Function(_) | TypableDef::Struct(_) | TypableDef::Enum(_) | TypableDef::Type(_) => last, TypableDef::EnumVariant(_) => { // the generic args for an enum variant may be either specified // on the segment referring to the enum, or on the segment // referring to the variant. So `Option::::None` and // `Option::None::` are both allowed (though the former is // preferred). See also `def_ids_for_path_segments` in rustc. let len = path.segments.len(); let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() { // Option::::None &path.segments[len - 2] } else { // Option::None:: last }; segment } }; Ty::substs_from_path_segment(db, resolver, segment, resolved) } } /// Build the declared type of an item. This depends on the namespace; e.g. for /// `struct Foo(usize)`, we have two types: The type of the struct itself, and /// the constructor function `(usize) -> Foo` which lives in the values /// namespace. pub(crate) fn type_for_def(db: &impl HirDatabase, def: TypableDef, ns: Namespace) -> Ty { match (def, ns) { (TypableDef::Function(f), Namespace::Values) => type_for_fn(db, f), (TypableDef::Struct(s), Namespace::Types) => type_for_struct(db, s), (TypableDef::Struct(s), Namespace::Values) => type_for_struct_constructor(db, s), (TypableDef::Enum(e), Namespace::Types) => type_for_enum(db, e), (TypableDef::EnumVariant(v), Namespace::Values) => type_for_enum_variant_constructor(db, v), (TypableDef::Type(t), Namespace::Types) => type_for_type_alias(db, t), // 'error' cases: (TypableDef::Function(_), Namespace::Types) => Ty::Unknown, (TypableDef::Enum(_), Namespace::Values) => Ty::Unknown, (TypableDef::EnumVariant(_), Namespace::Types) => Ty::Unknown, (TypableDef::Type(_), Namespace::Values) => Ty::Unknown, } } /// Build the type of a specific field of a struct or enum variant. pub(crate) fn type_for_field(db: &impl HirDatabase, field: StructField) -> Ty { let parent_def = field.parent_def(db); let resolver = match parent_def { VariantDef::Struct(it) => it.resolver(db), VariantDef::EnumVariant(it) => it.parent_enum(db).resolver(db), }; let var_data = parent_def.variant_data(db); let type_ref = &var_data.fields().unwrap()[field.id].type_ref; Ty::from_hir(db, &resolver, type_ref) } /// Build the declared type of a function. This should not need to look at the /// function body. fn type_for_fn(db: &impl HirDatabase, def: Function) -> Ty { let signature = def.signature(db); let resolver = def.resolver(db); let generics = def.generic_params(db); let name = def.name(db); let input = signature.params().iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::>(); let output = Ty::from_hir(db, &resolver, signature.ret_type()); let sig = Arc::new(FnSig { input, output }); let substs = make_substs(&generics); Ty::FnDef { def: def.into(), sig, name, substs } } /// Build the type of a tuple struct constructor. fn type_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> Ty { let var_data = def.variant_data(db); let fields = match var_data.fields() { Some(fields) => fields, None => return type_for_struct(db, def), // Unit struct }; let resolver = def.resolver(db); let generics = def.generic_params(db); let name = def.name(db).unwrap_or_else(Name::missing); let input = fields .iter() .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref)) .collect::>(); let output = type_for_struct(db, def); let sig = Arc::new(FnSig { input, output }); let substs = make_substs(&generics); Ty::FnDef { def: def.into(), sig, name, substs } } /// Build the type of a tuple enum variant constructor. fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> Ty { let var_data = def.variant_data(db); let fields = match var_data.fields() { Some(fields) => fields, None => return type_for_enum(db, def.parent_enum(db)), // Unit variant }; let resolver = def.parent_enum(db).resolver(db); let generics = def.parent_enum(db).generic_params(db); let name = def.name(db).unwrap_or_else(Name::missing); let input = fields .iter() .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref)) .collect::>(); let substs = make_substs(&generics); let output = type_for_enum(db, def.parent_enum(db)).subst(&substs); let sig = Arc::new(FnSig { input, output }); Ty::FnDef { def: def.into(), sig, name, substs } } fn make_substs(generics: &GenericParams) -> Substs { Substs( generics .params_including_parent() .into_iter() .map(|p| Ty::Param { idx: p.idx, name: p.name.clone() }) .collect::>() .into(), ) } fn type_for_struct(db: &impl HirDatabase, s: Struct) -> Ty { let generics = s.generic_params(db); Ty::Adt { def_id: s.into(), name: s.name(db).unwrap_or_else(Name::missing), substs: make_substs(&generics), } } fn type_for_enum(db: &impl HirDatabase, s: Enum) -> Ty { let generics = s.generic_params(db); Ty::Adt { def_id: s.into(), name: s.name(db).unwrap_or_else(Name::missing), substs: make_substs(&generics), } } fn type_for_type_alias(db: &impl HirDatabase, t: Type) -> Ty { let generics = t.generic_params(db); let resolver = t.resolver(db); let type_ref = t.type_ref(db); let substs = make_substs(&generics); let inner = Ty::from_hir(db, &resolver, &type_ref); inner.subst(&substs) } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum TypableDef { Function(Function), Struct(Struct), Enum(Enum), EnumVariant(EnumVariant), Type(Type), } impl_froms!(TypableDef: Function, Struct, Enum, EnumVariant, Type); impl From for Option { fn from(def: ModuleDef) -> Option { let res = match def { ModuleDef::Function(f) => f.into(), ModuleDef::Struct(s) => s.into(), ModuleDef::Enum(e) => e.into(), ModuleDef::EnumVariant(v) => v.into(), ModuleDef::Type(t) => t.into(), ModuleDef::Const(_) | ModuleDef::Static(_) | ModuleDef::Module(_) | ModuleDef::Trait(_) => return None, }; Some(res) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum CallableDef { Function(Function), Struct(Struct), EnumVariant(EnumVariant), } impl_froms!(CallableDef: Function, Struct, EnumVariant);