//! Client-side Proc-Macro crate //! //! We separate proc-macro expanding logic to an extern program to allow //! different implementations (e.g. wasm or dylib loading). And this crate //! is used to provide basic infrastructure for communication between two //! processes: Client (RA itself), Server (the external program) #![warn(rust_2018_idioms, unused_lifetimes)] pub mod msg; mod process; mod version; use base_db::Env; use indexmap::IndexSet; use paths::{AbsPath, AbsPathBuf}; use rustc_hash::FxHashMap; use span::Span; use std::{ fmt, io, sync::{Arc, Mutex}, }; use serde::{Deserialize, Serialize}; use crate::{ msg::{ deserialize_span_data_index_map, flat::serialize_span_data_index_map, ExpandMacro, ExpnGlobals, FlatTree, PanicMessage, HAS_GLOBAL_SPANS, RUST_ANALYZER_SPAN_SUPPORT, }, process::ProcMacroProcessSrv, }; pub use version::{read_dylib_info, read_version, RustCInfo}; #[derive(Copy, Clone, Eq, PartialEq, Debug, Serialize, Deserialize)] pub enum ProcMacroKind { CustomDerive, Attr, // This used to be called FuncLike, so that's what the server expects currently. #[serde(alias = "Bang")] #[serde(rename(serialize = "FuncLike", deserialize = "FuncLike"))] Bang, } /// A handle to an external process which load dylibs with macros (.so or .dll) /// and runs actual macro expansion functions. #[derive(Debug)] pub struct ProcMacroServer { /// Currently, the proc macro process expands all procedural macros sequentially. /// /// That means that concurrent salsa requests may block each other when expanding proc macros, /// which is unfortunate, but simple and good enough for the time being. /// /// Therefore, we just wrap the `ProcMacroProcessSrv` in a mutex here. process: Arc>, path: AbsPathBuf, } pub struct MacroDylib { path: AbsPathBuf, } impl MacroDylib { pub fn new(path: AbsPathBuf) -> MacroDylib { MacroDylib { path } } } /// A handle to a specific macro (a `#[proc_macro]` annotated function). /// /// It exists within a context of a specific [`ProcMacroProcess`] -- currently /// we share a single expander process for all macros. #[derive(Debug, Clone)] pub struct ProcMacro { process: Arc>, dylib_path: AbsPathBuf, name: String, kind: ProcMacroKind, } impl Eq for ProcMacro {} impl PartialEq for ProcMacro { fn eq(&self, other: &Self) -> bool { self.name == other.name && self.kind == other.kind && self.dylib_path == other.dylib_path && Arc::ptr_eq(&self.process, &other.process) } } #[derive(Clone, Debug)] pub struct ServerError { pub message: String, // io::Error isn't Clone for some reason pub io: Option>, } impl fmt::Display for ServerError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.message.fmt(f)?; if let Some(io) = &self.io { f.write_str(": ")?; io.fmt(f)?; } Ok(()) } } pub struct MacroPanic { pub message: String, } impl ProcMacroServer { /// Spawns an external process as the proc macro server and returns a client connected to it. pub fn spawn( process_path: &AbsPath, env: &FxHashMap, ) -> io::Result { let process = ProcMacroProcessSrv::run(process_path, env)?; Ok(ProcMacroServer { process: Arc::new(Mutex::new(process)), path: process_path.to_owned(), }) } pub fn path(&self) -> &AbsPath { &self.path } pub fn load_dylib(&self, dylib: MacroDylib) -> Result, ServerError> { let _p = tracing::span!(tracing::Level::INFO, "ProcMacroServer::load_dylib").entered(); let macros = self.process.lock().unwrap_or_else(|e| e.into_inner()).find_proc_macros(&dylib.path)?; match macros { Ok(macros) => Ok(macros .into_iter() .map(|(name, kind)| ProcMacro { process: self.process.clone(), name, kind, dylib_path: dylib.path.clone(), }) .collect()), Err(message) => Err(ServerError { message, io: None }), } } } impl ProcMacro { pub fn name(&self) -> &str { &self.name } pub fn kind(&self) -> ProcMacroKind { self.kind } pub fn expand( &self, subtree: &tt::Subtree, attr: Option<&tt::Subtree>, env: Env, def_site: Span, call_site: Span, mixed_site: Span, ) -> Result, PanicMessage>, ServerError> { let version = self.process.lock().unwrap_or_else(|e| e.into_inner()).version(); let current_dir = env.get("CARGO_MANIFEST_DIR"); let mut span_data_table = IndexSet::default(); let def_site = span_data_table.insert_full(def_site).0; let call_site = span_data_table.insert_full(call_site).0; let mixed_site = span_data_table.insert_full(mixed_site).0; let task = ExpandMacro { macro_body: FlatTree::new(subtree, version, &mut span_data_table), macro_name: self.name.to_string(), attributes: attr.map(|subtree| FlatTree::new(subtree, version, &mut span_data_table)), lib: self.dylib_path.to_path_buf().into(), env: env.into(), current_dir, has_global_spans: ExpnGlobals { serialize: version >= HAS_GLOBAL_SPANS, def_site, call_site, mixed_site, }, span_data_table: if version >= RUST_ANALYZER_SPAN_SUPPORT { serialize_span_data_index_map(&span_data_table) } else { Vec::new() }, }; let response = self .process .lock() .unwrap_or_else(|e| e.into_inner()) .send_task(msg::Request::ExpandMacro(Box::new(task)))?; match response { msg::Response::ExpandMacro(it) => { Ok(it.map(|tree| FlatTree::to_subtree_resolved(tree, version, &span_data_table))) } msg::Response::ExpandMacroExtended(it) => Ok(it.map(|resp| { FlatTree::to_subtree_resolved( resp.tree, version, &deserialize_span_data_index_map(&resp.span_data_table), ) })), _ => Err(ServerError { message: "unexpected response".to_owned(), io: None }), } } }