//! This module is concerned with finding methods that a given type provides. //! For details about how this works in rustc, see the method lookup page in the //! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html) //! and the corresponding code mostly in rustc_hir_analysis/check/method/probe.rs. use std::ops::ControlFlow; use base_db::CrateId; use chalk_ir::{cast::Cast, Mutability, TyKind, UniverseIndex, WhereClause}; use hir_def::{ data::{adt::StructFlags, ImplData}, nameres::DefMap, AssocItemId, BlockId, ConstId, FunctionId, HasModule, ImplId, ItemContainerId, Lookup, ModuleId, TraitId, }; use hir_expand::name::Name; use rustc_hash::{FxHashMap, FxHashSet}; use smallvec::{smallvec, SmallVec}; use span::Edition; use stdx::never; use triomphe::Arc; use crate::{ autoderef::{self, AutoderefKind}, db::HirDatabase, error_lifetime, from_chalk_trait_id, from_foreign_def_id, infer::{unify::InferenceTable, Adjust, Adjustment, OverloadedDeref, PointerCast}, primitive::{FloatTy, IntTy, UintTy}, to_chalk_trait_id, utils::all_super_traits, AdtId, Canonical, CanonicalVarKinds, DebruijnIndex, DynTyExt, ForeignDefId, Goal, Guidance, InEnvironment, Interner, Scalar, Solution, Substitution, TraitEnvironment, TraitRef, TraitRefExt, Ty, TyBuilder, TyExt, }; /// This is used as a key for indexing impls. #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum TyFingerprint { // These are lang item impls: Str, Slice, Array, Never, RawPtr(Mutability), Scalar(Scalar), // These can have user-defined impls: Adt(hir_def::AdtId), Dyn(TraitId), ForeignType(ForeignDefId), // These only exist for trait impls Unit, Unnameable, Function(u32), } impl TyFingerprint { /// Creates a TyFingerprint for looking up an inherent impl. Only certain /// types can have inherent impls: if we have some `struct S`, we can have /// an `impl S`, but not `impl &S`. Hence, this will return `None` for /// reference types and such. pub fn for_inherent_impl(ty: &Ty) -> Option { let fp = match ty.kind(Interner) { TyKind::Str => TyFingerprint::Str, TyKind::Never => TyFingerprint::Never, TyKind::Slice(..) => TyFingerprint::Slice, TyKind::Array(..) => TyFingerprint::Array, TyKind::Scalar(scalar) => TyFingerprint::Scalar(*scalar), TyKind::Adt(AdtId(adt), _) => TyFingerprint::Adt(*adt), TyKind::Raw(mutability, ..) => TyFingerprint::RawPtr(*mutability), TyKind::Foreign(alias_id, ..) => TyFingerprint::ForeignType(*alias_id), TyKind::Dyn(_) => ty.dyn_trait().map(TyFingerprint::Dyn)?, _ => return None, }; Some(fp) } /// Creates a TyFingerprint for looking up a trait impl. pub fn for_trait_impl(ty: &Ty) -> Option { let fp = match ty.kind(Interner) { TyKind::Str => TyFingerprint::Str, TyKind::Never => TyFingerprint::Never, TyKind::Slice(..) => TyFingerprint::Slice, TyKind::Array(..) => TyFingerprint::Array, TyKind::Scalar(scalar) => TyFingerprint::Scalar(*scalar), TyKind::Adt(AdtId(adt), _) => TyFingerprint::Adt(*adt), TyKind::Raw(mutability, ..) => TyFingerprint::RawPtr(*mutability), TyKind::Foreign(alias_id, ..) => TyFingerprint::ForeignType(*alias_id), TyKind::Dyn(_) => ty.dyn_trait().map(TyFingerprint::Dyn)?, TyKind::Ref(_, _, ty) => return TyFingerprint::for_trait_impl(ty), TyKind::Tuple(_, subst) => { let first_ty = subst.interned().first().map(|arg| arg.assert_ty_ref(Interner)); match first_ty { Some(ty) => return TyFingerprint::for_trait_impl(ty), None => TyFingerprint::Unit, } } TyKind::AssociatedType(_, _) | TyKind::OpaqueType(_, _) | TyKind::FnDef(_, _) | TyKind::Closure(_, _) | TyKind::Coroutine(..) | TyKind::CoroutineWitness(..) => TyFingerprint::Unnameable, TyKind::Function(fn_ptr) => { TyFingerprint::Function(fn_ptr.substitution.0.len(Interner) as u32) } TyKind::Alias(_) | TyKind::Placeholder(_) | TyKind::BoundVar(_) | TyKind::InferenceVar(_, _) | TyKind::Error => return None, }; Some(fp) } } pub(crate) const ALL_INT_FPS: [TyFingerprint; 12] = [ TyFingerprint::Scalar(Scalar::Int(IntTy::I8)), TyFingerprint::Scalar(Scalar::Int(IntTy::I16)), TyFingerprint::Scalar(Scalar::Int(IntTy::I32)), TyFingerprint::Scalar(Scalar::Int(IntTy::I64)), TyFingerprint::Scalar(Scalar::Int(IntTy::I128)), TyFingerprint::Scalar(Scalar::Int(IntTy::Isize)), TyFingerprint::Scalar(Scalar::Uint(UintTy::U8)), TyFingerprint::Scalar(Scalar::Uint(UintTy::U16)), TyFingerprint::Scalar(Scalar::Uint(UintTy::U32)), TyFingerprint::Scalar(Scalar::Uint(UintTy::U64)), TyFingerprint::Scalar(Scalar::Uint(UintTy::U128)), TyFingerprint::Scalar(Scalar::Uint(UintTy::Usize)), ]; pub(crate) const ALL_FLOAT_FPS: [TyFingerprint; 2] = [ TyFingerprint::Scalar(Scalar::Float(FloatTy::F32)), TyFingerprint::Scalar(Scalar::Float(FloatTy::F64)), ]; type TraitFpMap = FxHashMap, Box<[ImplId]>>>; type TraitFpMapCollector = FxHashMap, Vec>>; /// Trait impls defined or available in some crate. #[derive(Debug, Eq, PartialEq)] pub struct TraitImpls { // If the `Option` is `None`, the impl may apply to any self type. map: TraitFpMap, } impl TraitImpls { pub(crate) fn trait_impls_in_crate_query(db: &dyn HirDatabase, krate: CrateId) -> Arc { let _p = tracing::span!(tracing::Level::INFO, "trait_impls_in_crate_query", ?krate).entered(); let mut impls = FxHashMap::default(); Self::collect_def_map(db, &mut impls, &db.crate_def_map(krate)); Arc::new(Self::finish(impls)) } pub(crate) fn trait_impls_in_block_query( db: &dyn HirDatabase, block: BlockId, ) -> Option> { let _p = tracing::span!(tracing::Level::INFO, "trait_impls_in_block_query").entered(); let mut impls = FxHashMap::default(); Self::collect_def_map(db, &mut impls, &db.block_def_map(block)); if impls.is_empty() { None } else { Some(Arc::new(Self::finish(impls))) } } pub(crate) fn trait_impls_in_deps_query( db: &dyn HirDatabase, krate: CrateId, ) -> Arc<[Arc]> { let _p = tracing::span!(tracing::Level::INFO, "trait_impls_in_deps_query", ?krate).entered(); let crate_graph = db.crate_graph(); Arc::from_iter( crate_graph.transitive_deps(krate).map(|krate| db.trait_impls_in_crate(krate)), ) } fn finish(map: TraitFpMapCollector) -> TraitImpls { TraitImpls { map: map .into_iter() .map(|(k, v)| (k, v.into_iter().map(|(k, v)| (k, v.into_boxed_slice())).collect())) .collect(), } } fn collect_def_map(db: &dyn HirDatabase, map: &mut TraitFpMapCollector, def_map: &DefMap) { for (_module_id, module_data) in def_map.modules() { for impl_id in module_data.scope.impls() { // Reservation impls should be ignored during trait resolution, so we never need // them during type analysis. See rust-lang/rust#64631 for details. // // FIXME: Reservation impls should be considered during coherence checks. If we are // (ever) to implement coherence checks, this filtering should be done by the trait // solver. if db.attrs(impl_id.into()).by_key("rustc_reservation_impl").exists() { continue; } let target_trait = match db.impl_trait(impl_id) { Some(tr) => tr.skip_binders().hir_trait_id(), None => continue, }; let self_ty = db.impl_self_ty(impl_id); let self_ty_fp = TyFingerprint::for_trait_impl(self_ty.skip_binders()); map.entry(target_trait).or_default().entry(self_ty_fp).or_default().push(impl_id); } // To better support custom derives, collect impls in all unnamed const items. // const _: () = { ... }; for konst in module_data.scope.unnamed_consts() { let body = db.body(konst.into()); for (_, block_def_map) in body.blocks(db.upcast()) { Self::collect_def_map(db, map, &block_def_map); } } } } /// Queries all trait impls for the given type. pub fn for_self_ty_without_blanket_impls( &self, fp: TyFingerprint, ) -> impl Iterator + '_ { self.map .values() .flat_map(move |impls| impls.get(&Some(fp)).into_iter()) .flat_map(|it| it.iter().copied()) } /// Queries all impls of the given trait. pub fn for_trait(&self, trait_: TraitId) -> impl Iterator + '_ { self.map .get(&trait_) .into_iter() .flat_map(|map| map.values().flat_map(|v| v.iter().copied())) } /// Queries all impls of `trait_` that may apply to `self_ty`. pub fn for_trait_and_self_ty( &self, trait_: TraitId, self_ty: TyFingerprint, ) -> impl Iterator + '_ { self.map .get(&trait_) .into_iter() .flat_map(move |map| map.get(&Some(self_ty)).into_iter().chain(map.get(&None))) .flat_map(|v| v.iter().copied()) } /// Queries whether `self_ty` has potentially applicable implementations of `trait_`. pub fn has_impls_for_trait_and_self_ty(&self, trait_: TraitId, self_ty: TyFingerprint) -> bool { self.for_trait_and_self_ty(trait_, self_ty).next().is_some() } pub fn all_impls(&self) -> impl Iterator + '_ { self.map.values().flat_map(|map| map.values().flat_map(|v| v.iter().copied())) } } /// Inherent impls defined in some crate. /// /// Inherent impls can only be defined in the crate that also defines the self type of the impl /// (note that some primitives are considered to be defined by both libcore and liballoc). /// /// This makes inherent impl lookup easier than trait impl lookup since we only have to consider a /// single crate. #[derive(Debug, Eq, PartialEq)] pub struct InherentImpls { map: FxHashMap>, invalid_impls: Vec, } impl InherentImpls { pub(crate) fn inherent_impls_in_crate_query(db: &dyn HirDatabase, krate: CrateId) -> Arc { let _p = tracing::span!(tracing::Level::INFO, "inherent_impls_in_crate_query", ?krate).entered(); let mut impls = Self { map: FxHashMap::default(), invalid_impls: Vec::default() }; let crate_def_map = db.crate_def_map(krate); impls.collect_def_map(db, &crate_def_map); impls.shrink_to_fit(); Arc::new(impls) } pub(crate) fn inherent_impls_in_block_query( db: &dyn HirDatabase, block: BlockId, ) -> Option> { let _p = tracing::span!(tracing::Level::INFO, "inherent_impls_in_block_query").entered(); let mut impls = Self { map: FxHashMap::default(), invalid_impls: Vec::default() }; let block_def_map = db.block_def_map(block); impls.collect_def_map(db, &block_def_map); impls.shrink_to_fit(); if impls.map.is_empty() && impls.invalid_impls.is_empty() { None } else { Some(Arc::new(impls)) } } fn shrink_to_fit(&mut self) { self.map.values_mut().for_each(Vec::shrink_to_fit); self.map.shrink_to_fit(); } fn collect_def_map(&mut self, db: &dyn HirDatabase, def_map: &DefMap) { for (_module_id, module_data) in def_map.modules() { for impl_id in module_data.scope.impls() { let data = db.impl_data(impl_id); if data.target_trait.is_some() { continue; } let self_ty = db.impl_self_ty(impl_id); let self_ty = self_ty.skip_binders(); match is_inherent_impl_coherent(db, def_map, &data, self_ty) { true => { // `fp` should only be `None` in error cases (either erroneous code or incomplete name resolution) if let Some(fp) = TyFingerprint::for_inherent_impl(self_ty) { self.map.entry(fp).or_default().push(impl_id); } } false => self.invalid_impls.push(impl_id), } } // To better support custom derives, collect impls in all unnamed const items. // const _: () = { ... }; for konst in module_data.scope.unnamed_consts() { let body = db.body(konst.into()); for (_, block_def_map) in body.blocks(db.upcast()) { self.collect_def_map(db, &block_def_map); } } } } pub fn for_self_ty(&self, self_ty: &Ty) -> &[ImplId] { match TyFingerprint::for_inherent_impl(self_ty) { Some(fp) => self.map.get(&fp).map(|vec| vec.as_ref()).unwrap_or(&[]), None => &[], } } pub fn all_impls(&self) -> impl Iterator + '_ { self.map.values().flat_map(|v| v.iter().copied()) } pub fn invalid_impls(&self) -> &[ImplId] { &self.invalid_impls } } pub(crate) fn incoherent_inherent_impl_crates( db: &dyn HirDatabase, krate: CrateId, fp: TyFingerprint, ) -> SmallVec<[CrateId; 2]> { let _p = tracing::span!(tracing::Level::INFO, "incoherent_inherent_impl_crates").entered(); let mut res = SmallVec::new(); let crate_graph = db.crate_graph(); // should pass crate for finger print and do reverse deps for krate in crate_graph.transitive_deps(krate) { let impls = db.inherent_impls_in_crate(krate); if impls.map.get(&fp).map_or(false, |v| !v.is_empty()) { res.push(krate); } } res } pub fn def_crates( db: &dyn HirDatabase, ty: &Ty, cur_crate: CrateId, ) -> Option> { match ty.kind(Interner) { &TyKind::Adt(AdtId(def_id), _) => { let rustc_has_incoherent_inherent_impls = match def_id { hir_def::AdtId::StructId(id) => db .struct_data(id) .flags .contains(StructFlags::IS_RUSTC_HAS_INCOHERENT_INHERENT_IMPL), hir_def::AdtId::UnionId(id) => db .union_data(id) .flags .contains(StructFlags::IS_RUSTC_HAS_INCOHERENT_INHERENT_IMPL), hir_def::AdtId::EnumId(id) => db.enum_data(id).rustc_has_incoherent_inherent_impls, }; Some(if rustc_has_incoherent_inherent_impls { db.incoherent_inherent_impl_crates(cur_crate, TyFingerprint::Adt(def_id)) } else { smallvec![def_id.module(db.upcast()).krate()] }) } &TyKind::Foreign(id) => { let alias = from_foreign_def_id(id); Some(if db.type_alias_data(alias).rustc_has_incoherent_inherent_impls { db.incoherent_inherent_impl_crates(cur_crate, TyFingerprint::ForeignType(id)) } else { smallvec![alias.module(db.upcast()).krate()] }) } TyKind::Dyn(_) => { let trait_id = ty.dyn_trait()?; Some(if db.trait_data(trait_id).rustc_has_incoherent_inherent_impls { db.incoherent_inherent_impl_crates(cur_crate, TyFingerprint::Dyn(trait_id)) } else { smallvec![trait_id.module(db.upcast()).krate()] }) } // for primitives, there may be impls in various places (core and alloc // mostly). We just check the whole crate graph for crates with impls // (cached behind a query). TyKind::Scalar(_) | TyKind::Str | TyKind::Slice(_) | TyKind::Array(..) | TyKind::Raw(..) => Some(db.incoherent_inherent_impl_crates( cur_crate, TyFingerprint::for_inherent_impl(ty).expect("fingerprint for primitive"), )), _ => None, } } /// Look up the method with the given name. pub(crate) fn lookup_method( db: &dyn HirDatabase, ty: &Canonical, env: Arc, traits_in_scope: &FxHashSet, visible_from_module: VisibleFromModule, name: &Name, ) -> Option<(ReceiverAdjustments, FunctionId, bool)> { let mut not_visible = None; let res = iterate_method_candidates( ty, db, env, traits_in_scope, visible_from_module, Some(name), LookupMode::MethodCall, |adjustments, f, visible| match f { AssocItemId::FunctionId(f) if visible => Some((adjustments, f, true)), AssocItemId::FunctionId(f) if not_visible.is_none() => { not_visible = Some((adjustments, f, false)); None } _ => None, }, ); res.or(not_visible) } /// Whether we're looking up a dotted method call (like `v.len()`) or a path /// (like `Vec::new`). #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum LookupMode { /// Looking up a method call like `v.len()`: We only consider candidates /// that have a `self` parameter, and do autoderef. MethodCall, /// Looking up a path like `Vec::new` or `Vec::default`: We consider all /// candidates including associated constants, but don't do autoderef. Path, } #[derive(Clone, Copy)] pub enum VisibleFromModule { /// Filter for results that are visible from the given module Filter(ModuleId), /// Include impls from the given block. IncludeBlock(BlockId), /// Do nothing special in regards visibility None, } impl From> for VisibleFromModule { fn from(module: Option) -> Self { match module { Some(module) => Self::Filter(module), None => Self::None, } } } impl From> for VisibleFromModule { fn from(block: Option) -> Self { match block { Some(block) => Self::IncludeBlock(block), None => Self::None, } } } #[derive(Debug, Clone, Default)] pub struct ReceiverAdjustments { autoref: Option, autoderefs: usize, unsize_array: bool, } impl ReceiverAdjustments { pub(crate) fn apply(&self, table: &mut InferenceTable<'_>, ty: Ty) -> (Ty, Vec) { let mut ty = table.resolve_ty_shallow(&ty); let mut adjust = Vec::new(); for _ in 0..self.autoderefs { match autoderef::autoderef_step(table, ty.clone(), true) { None => { never!("autoderef not possible for {:?}", ty); ty = TyKind::Error.intern(Interner); break; } Some((kind, new_ty)) => { ty = new_ty.clone(); adjust.push(Adjustment { kind: Adjust::Deref(match kind { // FIXME should we know the mutability here, when autoref is `None`? AutoderefKind::Overloaded => Some(OverloadedDeref(self.autoref)), AutoderefKind::Builtin => None, }), target: new_ty, }); } } } if let Some(m) = self.autoref { let a = Adjustment::borrow(m, ty); ty = a.target.clone(); adjust.push(a); } if self.unsize_array { ty = 'it: { if let TyKind::Ref(m, l, inner) = ty.kind(Interner) { if let TyKind::Array(inner, _) = inner.kind(Interner) { break 'it TyKind::Ref( *m, l.clone(), TyKind::Slice(inner.clone()).intern(Interner), ) .intern(Interner); } } // FIXME: report diagnostic if array unsizing happens without indirection. ty }; adjust.push(Adjustment { kind: Adjust::Pointer(PointerCast::Unsize), target: ty.clone(), }); } (ty, adjust) } fn with_autoref(&self, m: Mutability) -> ReceiverAdjustments { Self { autoref: Some(m), ..*self } } } // This would be nicer if it just returned an iterator, but that runs into // lifetime problems, because we need to borrow temp `CrateImplDefs`. // FIXME add a context type here? pub(crate) fn iterate_method_candidates( ty: &Canonical, db: &dyn HirDatabase, env: Arc, traits_in_scope: &FxHashSet, visible_from_module: VisibleFromModule, name: Option<&Name>, mode: LookupMode, mut callback: impl FnMut(ReceiverAdjustments, AssocItemId, bool) -> Option, ) -> Option { let mut slot = None; iterate_method_candidates_dyn( ty, db, env, traits_in_scope, visible_from_module, name, mode, &mut |adj, item, visible| { assert!(slot.is_none()); if let Some(it) = callback(adj, item, visible) { slot = Some(it); return ControlFlow::Break(()); } ControlFlow::Continue(()) }, ); slot } pub fn lookup_impl_const( db: &dyn HirDatabase, env: Arc, const_id: ConstId, subs: Substitution, ) -> (ConstId, Substitution) { let trait_id = match const_id.lookup(db.upcast()).container { ItemContainerId::TraitId(id) => id, _ => return (const_id, subs), }; let substitution = Substitution::from_iter(Interner, subs.iter(Interner)); let trait_ref = TraitRef { trait_id: to_chalk_trait_id(trait_id), substitution }; let const_data = db.const_data(const_id); let name = match const_data.name.as_ref() { Some(name) => name, None => return (const_id, subs), }; lookup_impl_assoc_item_for_trait_ref(trait_ref, db, env, name) .and_then( |assoc| if let (AssocItemId::ConstId(id), s) = assoc { Some((id, s)) } else { None }, ) .unwrap_or((const_id, subs)) } /// Checks if the self parameter of `Trait` method is the `dyn Trait` and we should /// call the method using the vtable. pub fn is_dyn_method( db: &dyn HirDatabase, _env: Arc, func: FunctionId, fn_subst: Substitution, ) -> Option { let ItemContainerId::TraitId(trait_id) = func.lookup(db.upcast()).container else { return None; }; let trait_params = db.generic_params(trait_id.into()).len(); let fn_params = fn_subst.len(Interner) - trait_params; let trait_ref = TraitRef { trait_id: to_chalk_trait_id(trait_id), substitution: Substitution::from_iter(Interner, fn_subst.iter(Interner).skip(fn_params)), }; let self_ty = trait_ref.self_type_parameter(Interner); if let TyKind::Dyn(d) = self_ty.kind(Interner) { let is_my_trait_in_bounds = d .bounds .skip_binders() .as_slice(Interner) .iter() .map(|it| it.skip_binders()) .flat_map(|it| match it { WhereClause::Implemented(tr) => { all_super_traits(db.upcast(), from_chalk_trait_id(tr.trait_id)) } _ => smallvec![], }) // rustc doesn't accept `impl Foo<2> for dyn Foo<5>`, so if the trait id is equal, no matter // what the generics are, we are sure that the method is come from the vtable. .any(|x| x == trait_id); if is_my_trait_in_bounds { return Some(fn_params); } } None } /// Looks up the impl method that actually runs for the trait method `func`. /// /// Returns `func` if it's not a method defined in a trait or the lookup failed. pub(crate) fn lookup_impl_method_query( db: &dyn HirDatabase, env: Arc, func: FunctionId, fn_subst: Substitution, ) -> (FunctionId, Substitution) { let ItemContainerId::TraitId(trait_id) = func.lookup(db.upcast()).container else { return (func, fn_subst); }; let trait_params = db.generic_params(trait_id.into()).len(); let fn_params = fn_subst.len(Interner) - trait_params; let trait_ref = TraitRef { trait_id: to_chalk_trait_id(trait_id), substitution: Substitution::from_iter(Interner, fn_subst.iter(Interner).skip(fn_params)), }; let name = &db.function_data(func).name; let Some((impl_fn, impl_subst)) = lookup_impl_assoc_item_for_trait_ref(trait_ref, db, env, name).and_then(|assoc| { if let (AssocItemId::FunctionId(id), subst) = assoc { Some((id, subst)) } else { None } }) else { return (func, fn_subst); }; ( impl_fn, Substitution::from_iter( Interner, fn_subst.iter(Interner).take(fn_params).chain(impl_subst.iter(Interner)), ), ) } fn lookup_impl_assoc_item_for_trait_ref( trait_ref: TraitRef, db: &dyn HirDatabase, env: Arc, name: &Name, ) -> Option<(AssocItemId, Substitution)> { let hir_trait_id = trait_ref.hir_trait_id(); let self_ty = trait_ref.self_type_parameter(Interner); let self_ty_fp = TyFingerprint::for_trait_impl(&self_ty)?; let impls = db.trait_impls_in_deps(env.krate); let self_impls = match self_ty.kind(Interner) { TyKind::Adt(id, _) => { id.0.module(db.upcast()).containing_block().and_then(|it| db.trait_impls_in_block(it)) } _ => None, }; let impls = impls .iter() .chain(self_impls.as_ref()) .flat_map(|impls| impls.for_trait_and_self_ty(hir_trait_id, self_ty_fp)); let table = InferenceTable::new(db, env); let (impl_data, impl_subst) = find_matching_impl(impls, table, trait_ref)?; let item = impl_data.items.iter().find_map(|&it| match it { AssocItemId::FunctionId(f) => { (db.function_data(f).name == *name).then_some(AssocItemId::FunctionId(f)) } AssocItemId::ConstId(c) => db .const_data(c) .name .as_ref() .map(|n| n == name) .and_then(|result| if result { Some(AssocItemId::ConstId(c)) } else { None }), AssocItemId::TypeAliasId(_) => None, })?; Some((item, impl_subst)) } fn find_matching_impl( mut impls: impl Iterator, mut table: InferenceTable<'_>, actual_trait_ref: TraitRef, ) -> Option<(Arc, Substitution)> { let db = table.db; impls.find_map(|impl_| { table.run_in_snapshot(|table| { let impl_data = db.impl_data(impl_); let impl_substs = TyBuilder::subst_for_def(db, impl_, None).fill_with_inference_vars(table).build(); let trait_ref = db .impl_trait(impl_) .expect("non-trait method in find_matching_impl") .substitute(Interner, &impl_substs); if !table.unify(&trait_ref, &actual_trait_ref) { return None; } let wcs = crate::chalk_db::convert_where_clauses(db, impl_.into(), &impl_substs) .into_iter() .map(|b| b.cast(Interner)); let goal = crate::Goal::all(Interner, wcs); table.try_obligation(goal.clone())?; table.register_obligation(goal); Some((impl_data, table.resolve_completely(impl_substs))) }) }) } fn is_inherent_impl_coherent( db: &dyn HirDatabase, def_map: &DefMap, impl_data: &ImplData, self_ty: &Ty, ) -> bool { let self_ty = self_ty.kind(Interner); let impl_allowed = match self_ty { TyKind::Tuple(_, _) | TyKind::FnDef(_, _) | TyKind::Array(_, _) | TyKind::Never | TyKind::Raw(_, _) | TyKind::Ref(_, _, _) | TyKind::Slice(_) | TyKind::Str | TyKind::Scalar(_) => def_map.is_rustc_coherence_is_core(), &TyKind::Adt(AdtId(adt), _) => adt.module(db.upcast()).krate() == def_map.krate(), TyKind::Dyn(it) => it.principal().map_or(false, |trait_ref| { from_chalk_trait_id(trait_ref.trait_id).module(db.upcast()).krate() == def_map.krate() }), _ => true, }; impl_allowed || { let rustc_has_incoherent_inherent_impls = match self_ty { TyKind::Tuple(_, _) | TyKind::FnDef(_, _) | TyKind::Array(_, _) | TyKind::Never | TyKind::Raw(_, _) | TyKind::Ref(_, _, _) | TyKind::Slice(_) | TyKind::Str | TyKind::Scalar(_) => true, &TyKind::Adt(AdtId(adt), _) => match adt { hir_def::AdtId::StructId(id) => db .struct_data(id) .flags .contains(StructFlags::IS_RUSTC_HAS_INCOHERENT_INHERENT_IMPL), hir_def::AdtId::UnionId(id) => db .union_data(id) .flags .contains(StructFlags::IS_RUSTC_HAS_INCOHERENT_INHERENT_IMPL), hir_def::AdtId::EnumId(it) => db.enum_data(it).rustc_has_incoherent_inherent_impls, }, TyKind::Dyn(it) => it.principal().map_or(false, |trait_ref| { db.trait_data(from_chalk_trait_id(trait_ref.trait_id)) .rustc_has_incoherent_inherent_impls }), _ => false, }; rustc_has_incoherent_inherent_impls && !impl_data.items.is_empty() && impl_data.items.iter().copied().all(|assoc| match assoc { AssocItemId::FunctionId(it) => db.function_data(it).rustc_allow_incoherent_impl, AssocItemId::ConstId(it) => db.const_data(it).rustc_allow_incoherent_impl, AssocItemId::TypeAliasId(it) => db.type_alias_data(it).rustc_allow_incoherent_impl, }) } } /// Checks whether the impl satisfies the orphan rules. /// /// Given `impl Trait for T0`, an `impl`` is valid only if at least one of the following is true: /// - Trait is a local trait /// - All of /// - At least one of the types `T0..=Tn`` must be a local type. Let `Ti`` be the first such type. /// - No uncovered type parameters `P1..=Pn` may appear in `T0..Ti`` (excluding `Ti`) pub fn check_orphan_rules(db: &dyn HirDatabase, impl_: ImplId) -> bool { let substs = TyBuilder::placeholder_subst(db, impl_); let Some(impl_trait) = db.impl_trait(impl_) else { // not a trait impl return true; }; let local_crate = impl_.lookup(db.upcast()).container.krate(); let is_local = |tgt_crate| tgt_crate == local_crate; let trait_ref = impl_trait.substitute(Interner, &substs); let trait_id = from_chalk_trait_id(trait_ref.trait_id); if is_local(trait_id.module(db.upcast()).krate()) { // trait to be implemented is local return true; } let unwrap_fundamental = |ty: Ty| match ty.kind(Interner) { TyKind::Ref(_, _, referenced) => referenced.clone(), &TyKind::Adt(AdtId(hir_def::AdtId::StructId(s)), ref subs) => { let struct_data = db.struct_data(s); if struct_data.flags.contains(StructFlags::IS_FUNDAMENTAL) { let next = subs.type_parameters(Interner).next(); match next { Some(ty) => ty, None => ty, } } else { ty } } _ => ty, }; // - At least one of the types `T0..=Tn`` must be a local type. Let `Ti`` be the first such type. let is_not_orphan = trait_ref.substitution.type_parameters(Interner).any(|ty| { match unwrap_fundamental(ty).kind(Interner) { &TyKind::Adt(AdtId(id), _) => is_local(id.module(db.upcast()).krate()), TyKind::Error => true, TyKind::Dyn(it) => it.principal().map_or(false, |trait_ref| { is_local(from_chalk_trait_id(trait_ref.trait_id).module(db.upcast()).krate()) }), _ => false, } }); // FIXME: param coverage // - No uncovered type parameters `P1..=Pn` may appear in `T0..Ti`` (excluding `Ti`) is_not_orphan } pub fn iterate_path_candidates( ty: &Canonical, db: &dyn HirDatabase, env: Arc, traits_in_scope: &FxHashSet, visible_from_module: VisibleFromModule, name: Option<&Name>, callback: &mut dyn FnMut(AssocItemId) -> ControlFlow<()>, ) -> ControlFlow<()> { iterate_method_candidates_dyn( ty, db, env, traits_in_scope, visible_from_module, name, LookupMode::Path, // the adjustments are not relevant for path lookup &mut |_, id, _| callback(id), ) } pub fn iterate_method_candidates_dyn( ty: &Canonical, db: &dyn HirDatabase, env: Arc, traits_in_scope: &FxHashSet, visible_from_module: VisibleFromModule, name: Option<&Name>, mode: LookupMode, callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId, bool) -> ControlFlow<()>, ) -> ControlFlow<()> { let _p = tracing::span!( tracing::Level::INFO, "iterate_method_candidates_dyn", ?mode, ?name, traits_in_scope_len = traits_in_scope.len() ) .entered(); match mode { LookupMode::MethodCall => { // For method calls, rust first does any number of autoderef, and // then one autoref (i.e. when the method takes &self or &mut self). // Note that when we've got a receiver like &S, even if the method // we find in the end takes &self, we still do the autoderef step // (just as rustc does an autoderef and then autoref again). // We have to be careful about the order we're looking at candidates // in here. Consider the case where we're resolving `it.clone()` // where `it: &Vec<_>`. This resolves to the clone method with self // type `Vec<_>`, *not* `&_`. I.e. we need to consider methods where // the receiver type exactly matches before cases where we have to // do autoref. But in the autoderef steps, the `&_` self type comes // up *before* the `Vec<_>` self type. // // On the other hand, we don't want to just pick any by-value method // before any by-autoref method; it's just that we need to consider // the methods by autoderef order of *receiver types*, not *self // types*. let mut table = InferenceTable::new(db, env); let ty = table.instantiate_canonical(ty.clone()); let deref_chain = autoderef_method_receiver(&mut table, ty); deref_chain.into_iter().try_for_each(|(receiver_ty, adj)| { iterate_method_candidates_with_autoref( &mut table, receiver_ty, adj, traits_in_scope, visible_from_module, name, callback, ) }) } LookupMode::Path => { // No autoderef for path lookups iterate_method_candidates_for_self_ty( ty, db, env, traits_in_scope, visible_from_module, name, callback, ) } } } #[tracing::instrument(skip_all, fields(name = ?name))] fn iterate_method_candidates_with_autoref( table: &mut InferenceTable<'_>, receiver_ty: Canonical, first_adjustment: ReceiverAdjustments, traits_in_scope: &FxHashSet, visible_from_module: VisibleFromModule, name: Option<&Name>, mut callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId, bool) -> ControlFlow<()>, ) -> ControlFlow<()> { if receiver_ty.value.is_general_var(Interner, &receiver_ty.binders) { // don't try to resolve methods on unknown types return ControlFlow::Continue(()); } let mut iterate_method_candidates_by_receiver = move |receiver_ty, first_adjustment| { iterate_method_candidates_by_receiver( table, receiver_ty, first_adjustment, traits_in_scope, visible_from_module, name, &mut callback, ) }; let mut maybe_reborrowed = first_adjustment.clone(); if let Some((_, _, m)) = receiver_ty.value.as_reference() { // Prefer reborrow of references to move maybe_reborrowed.autoref = Some(m); maybe_reborrowed.autoderefs += 1; } iterate_method_candidates_by_receiver(receiver_ty.clone(), maybe_reborrowed)?; let refed = Canonical { value: TyKind::Ref(Mutability::Not, error_lifetime(), receiver_ty.value.clone()) .intern(Interner), binders: receiver_ty.binders.clone(), }; iterate_method_candidates_by_receiver(refed, first_adjustment.with_autoref(Mutability::Not))?; let ref_muted = Canonical { value: TyKind::Ref(Mutability::Mut, error_lifetime(), receiver_ty.value.clone()) .intern(Interner), binders: receiver_ty.binders, }; iterate_method_candidates_by_receiver(ref_muted, first_adjustment.with_autoref(Mutability::Mut)) } #[tracing::instrument(skip_all, fields(name = ?name))] fn iterate_method_candidates_by_receiver( table: &mut InferenceTable<'_>, receiver_ty: Canonical, receiver_adjustments: ReceiverAdjustments, traits_in_scope: &FxHashSet, visible_from_module: VisibleFromModule, name: Option<&Name>, mut callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId, bool) -> ControlFlow<()>, ) -> ControlFlow<()> { let receiver_ty = table.instantiate_canonical(receiver_ty); // We're looking for methods with *receiver* type receiver_ty. These could // be found in any of the derefs of receiver_ty, so we have to go through // that, including raw derefs. table.run_in_snapshot(|table| { let mut autoderef = autoderef::Autoderef::new(table, receiver_ty.clone(), true); while let Some((self_ty, _)) = autoderef.next() { iterate_inherent_methods( &self_ty, autoderef.table, name, Some(&receiver_ty), Some(receiver_adjustments.clone()), visible_from_module, &mut callback, )? } ControlFlow::Continue(()) })?; table.run_in_snapshot(|table| { let mut autoderef = autoderef::Autoderef::new(table, receiver_ty.clone(), true); while let Some((self_ty, _)) = autoderef.next() { iterate_trait_method_candidates( &self_ty, autoderef.table, traits_in_scope, name, Some(&receiver_ty), Some(receiver_adjustments.clone()), &mut callback, )? } ControlFlow::Continue(()) }) } #[tracing::instrument(skip_all, fields(name = ?name))] fn iterate_method_candidates_for_self_ty( self_ty: &Canonical, db: &dyn HirDatabase, env: Arc, traits_in_scope: &FxHashSet, visible_from_module: VisibleFromModule, name: Option<&Name>, mut callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId, bool) -> ControlFlow<()>, ) -> ControlFlow<()> { let mut table = InferenceTable::new(db, env); let self_ty = table.instantiate_canonical(self_ty.clone()); iterate_inherent_methods( &self_ty, &mut table, name, None, None, visible_from_module, &mut callback, )?; iterate_trait_method_candidates( &self_ty, &mut table, traits_in_scope, name, None, None, callback, ) } #[tracing::instrument(skip_all, fields(name = ?name, visible_from_module, receiver_ty))] fn iterate_trait_method_candidates( self_ty: &Ty, table: &mut InferenceTable<'_>, traits_in_scope: &FxHashSet, name: Option<&Name>, receiver_ty: Option<&Ty>, receiver_adjustments: Option, callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId, bool) -> ControlFlow<()>, ) -> ControlFlow<()> { let db = table.db; let canonical_self_ty = table.canonicalize(self_ty.clone()); let TraitEnvironment { krate, block, .. } = *table.trait_env; 'traits: for &t in traits_in_scope { let data = db.trait_data(t); // Traits annotated with `#[rustc_skip_array_during_method_dispatch]` are skipped during // method resolution, if the receiver is an array, and we're compiling for editions before // 2021. // This is to make `[a].into_iter()` not break code with the new `IntoIterator` impl for // arrays. if data.skip_array_during_method_dispatch && matches!(self_ty.kind(Interner), chalk_ir::TyKind::Array(..)) { // FIXME: this should really be using the edition of the method name's span, in case it // comes from a macro if db.crate_graph()[krate].edition < Edition::Edition2021 { continue; } } // we'll be lazy about checking whether the type implements the // trait, but if we find out it doesn't, we'll skip the rest of the // iteration let mut known_implemented = false; for &(_, item) in data.items.iter() { // Don't pass a `visible_from_module` down to `is_valid_candidate`, // since only inherent methods should be included into visibility checking. let visible = match is_valid_trait_method_candidate(table, t, name, receiver_ty, item, self_ty) { IsValidCandidate::Yes => true, IsValidCandidate::NotVisible => false, IsValidCandidate::No => continue, }; if !known_implemented { let goal = generic_implements_goal(db, &table.trait_env, t, &canonical_self_ty); if db.trait_solve(krate, block, goal.cast(Interner)).is_none() { continue 'traits; } } known_implemented = true; callback(receiver_adjustments.clone().unwrap_or_default(), item, visible)?; } } ControlFlow::Continue(()) } #[tracing::instrument(skip_all, fields(name = ?name, visible_from_module, receiver_ty))] fn iterate_inherent_methods( self_ty: &Ty, table: &mut InferenceTable<'_>, name: Option<&Name>, receiver_ty: Option<&Ty>, receiver_adjustments: Option, visible_from_module: VisibleFromModule, callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId, bool) -> ControlFlow<()>, ) -> ControlFlow<()> { let db = table.db; let env = table.trait_env.clone(); // For trait object types and placeholder types with trait bounds, the methods of the trait and // its super traits are considered inherent methods. This matters because these methods have // higher priority than the other traits' methods, which would be considered in // `iterate_trait_method_candidates()` only after this function. match self_ty.kind(Interner) { TyKind::Placeholder(_) => { let env = table.trait_env.clone(); let traits = env .traits_in_scope_from_clauses(self_ty.clone()) .flat_map(|t| all_super_traits(db.upcast(), t)); iterate_inherent_trait_methods( self_ty, table, name, receiver_ty, receiver_adjustments.clone(), callback, traits, )?; } TyKind::Dyn(_) => { if let Some(principal_trait) = self_ty.dyn_trait() { let traits = all_super_traits(db.upcast(), principal_trait); iterate_inherent_trait_methods( self_ty, table, name, receiver_ty, receiver_adjustments.clone(), callback, traits.into_iter(), )?; } } _ => {} } let def_crates = match def_crates(db, self_ty, env.krate) { Some(k) => k, None => return ControlFlow::Continue(()), }; let (module, mut block) = match visible_from_module { VisibleFromModule::Filter(module) => (Some(module), module.containing_block()), VisibleFromModule::IncludeBlock(block) => (None, Some(block)), VisibleFromModule::None => (None, None), }; while let Some(block_id) = block { if let Some(impls) = db.inherent_impls_in_block(block_id) { impls_for_self_ty( &impls, self_ty, table, name, receiver_ty, receiver_adjustments.clone(), module, callback, )?; } block = db.block_def_map(block_id).parent().and_then(|module| module.containing_block()); } for krate in def_crates { let impls = db.inherent_impls_in_crate(krate); impls_for_self_ty( &impls, self_ty, table, name, receiver_ty, receiver_adjustments.clone(), module, callback, )?; } return ControlFlow::Continue(()); #[tracing::instrument(skip_all, fields(name = ?name, visible_from_module, receiver_ty))] fn iterate_inherent_trait_methods( self_ty: &Ty, table: &mut InferenceTable<'_>, name: Option<&Name>, receiver_ty: Option<&Ty>, receiver_adjustments: Option, callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId, bool) -> ControlFlow<()>, traits: impl Iterator, ) -> ControlFlow<()> { let db = table.db; for t in traits { let data = db.trait_data(t); for &(_, item) in data.items.iter() { // We don't pass `visible_from_module` as all trait items should be visible. let visible = match is_valid_trait_method_candidate( table, t, name, receiver_ty, item, self_ty, ) { IsValidCandidate::Yes => true, IsValidCandidate::NotVisible => false, IsValidCandidate::No => continue, }; callback(receiver_adjustments.clone().unwrap_or_default(), item, visible)?; } } ControlFlow::Continue(()) } #[tracing::instrument(skip_all, fields(name = ?name, visible_from_module, receiver_ty))] fn impls_for_self_ty( impls: &InherentImpls, self_ty: &Ty, table: &mut InferenceTable<'_>, name: Option<&Name>, receiver_ty: Option<&Ty>, receiver_adjustments: Option, visible_from_module: Option, callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId, bool) -> ControlFlow<()>, ) -> ControlFlow<()> { for &impl_id in impls.for_self_ty(self_ty) { for &item in &table.db.impl_data(impl_id).items { let visible = match is_valid_impl_method_candidate( table, self_ty, receiver_ty, visible_from_module, name, impl_id, item, ) { IsValidCandidate::Yes => true, IsValidCandidate::NotVisible => false, IsValidCandidate::No => continue, }; callback(receiver_adjustments.clone().unwrap_or_default(), item, visible)?; } } ControlFlow::Continue(()) } } /// Returns the receiver type for the index trait call. pub(crate) fn resolve_indexing_op( db: &dyn HirDatabase, env: Arc, ty: Canonical, index_trait: TraitId, ) -> Option { let mut table = InferenceTable::new(db, env); let ty = table.instantiate_canonical(ty); let deref_chain = autoderef_method_receiver(&mut table, ty); for (ty, adj) in deref_chain { let goal = generic_implements_goal(db, &table.trait_env, index_trait, &ty); if db .trait_solve(table.trait_env.krate, table.trait_env.block, goal.cast(Interner)) .is_some() { return Some(adj); } } None } // FIXME: Replace this with a `Try` impl once stable macro_rules! check_that { ($cond:expr) => { if !$cond { return IsValidCandidate::No; } }; } #[derive(Debug)] enum IsValidCandidate { Yes, No, NotVisible, } #[tracing::instrument(skip_all, fields(name))] fn is_valid_impl_method_candidate( table: &mut InferenceTable<'_>, self_ty: &Ty, receiver_ty: Option<&Ty>, visible_from_module: Option, name: Option<&Name>, impl_id: ImplId, item: AssocItemId, ) -> IsValidCandidate { match item { AssocItemId::FunctionId(f) => is_valid_impl_fn_candidate( table, impl_id, f, name, receiver_ty, self_ty, visible_from_module, ), AssocItemId::ConstId(c) => { let db = table.db; check_that!(receiver_ty.is_none()); check_that!(name.map_or(true, |n| db.const_data(c).name.as_ref() == Some(n))); if let Some(from_module) = visible_from_module { if !db.const_visibility(c).is_visible_from(db.upcast(), from_module) { cov_mark::hit!(const_candidate_not_visible); return IsValidCandidate::NotVisible; } } let self_ty_matches = table.run_in_snapshot(|table| { let expected_self_ty = TyBuilder::impl_self_ty(db, impl_id).fill_with_inference_vars(table).build(); table.unify(&expected_self_ty, self_ty) }); if !self_ty_matches { cov_mark::hit!(const_candidate_self_type_mismatch); return IsValidCandidate::No; } IsValidCandidate::Yes } _ => IsValidCandidate::No, } } /// Checks whether a given `AssocItemId` is applicable for `receiver_ty`. #[tracing::instrument(skip_all, fields(name))] fn is_valid_trait_method_candidate( table: &mut InferenceTable<'_>, trait_id: TraitId, name: Option<&Name>, receiver_ty: Option<&Ty>, item: AssocItemId, self_ty: &Ty, ) -> IsValidCandidate { let db = table.db; match item { AssocItemId::FunctionId(fn_id) => { let data = db.function_data(fn_id); check_that!(name.map_or(true, |n| n == &data.name)); table.run_in_snapshot(|table| { let impl_subst = TyBuilder::subst_for_def(db, trait_id, None) .fill_with_inference_vars(table) .build(); let expect_self_ty = impl_subst.at(Interner, 0).assert_ty_ref(Interner).clone(); check_that!(table.unify(&expect_self_ty, self_ty)); if let Some(receiver_ty) = receiver_ty { check_that!(data.has_self_param()); let fn_subst = TyBuilder::subst_for_def(db, fn_id, Some(impl_subst)) .fill_with_inference_vars(table) .build(); let sig = db.callable_item_signature(fn_id.into()); let expected_receiver = sig.map(|s| s.params()[0].clone()).substitute(Interner, &fn_subst); check_that!(table.unify(receiver_ty, &expected_receiver)); } IsValidCandidate::Yes }) } AssocItemId::ConstId(c) => { check_that!(receiver_ty.is_none()); check_that!(name.map_or(true, |n| db.const_data(c).name.as_ref() == Some(n))); IsValidCandidate::Yes } _ => IsValidCandidate::No, } } #[tracing::instrument(skip_all, fields(name))] fn is_valid_impl_fn_candidate( table: &mut InferenceTable<'_>, impl_id: ImplId, fn_id: FunctionId, name: Option<&Name>, receiver_ty: Option<&Ty>, self_ty: &Ty, visible_from_module: Option, ) -> IsValidCandidate { let db = table.db; let data = db.function_data(fn_id); check_that!(name.map_or(true, |n| n == &data.name)); if let Some(from_module) = visible_from_module { if !db.function_visibility(fn_id).is_visible_from(db.upcast(), from_module) { cov_mark::hit!(autoderef_candidate_not_visible); return IsValidCandidate::NotVisible; } } table.run_in_snapshot(|table| { let _p = tracing::span!(tracing::Level::INFO, "subst_for_def").entered(); let impl_subst = TyBuilder::subst_for_def(db, impl_id, None).fill_with_inference_vars(table).build(); let expect_self_ty = db.impl_self_ty(impl_id).substitute(Interner, &impl_subst); check_that!(table.unify(&expect_self_ty, self_ty)); if let Some(receiver_ty) = receiver_ty { let _p = tracing::span!(tracing::Level::INFO, "check_receiver_ty").entered(); check_that!(data.has_self_param()); let fn_subst = TyBuilder::subst_for_def(db, fn_id, Some(impl_subst.clone())) .fill_with_inference_vars(table) .build(); let sig = db.callable_item_signature(fn_id.into()); let expected_receiver = sig.map(|s| s.params()[0].clone()).substitute(Interner, &fn_subst); check_that!(table.unify(receiver_ty, &expected_receiver)); } // We need to consider the bounds on the impl to distinguish functions of the same name // for a type. let predicates = db.generic_predicates(impl_id.into()); let goals = predicates.iter().map(|p| { let (p, b) = p .clone() .substitute(Interner, &impl_subst) // Skipping the inner binders is ok, as we don't handle quantified where // clauses yet. .into_value_and_skipped_binders(); stdx::always!(b.len(Interner) == 0); p.cast::(Interner) }); for goal in goals.clone() { let in_env = InEnvironment::new(&table.trait_env.env, goal); let canonicalized = table.canonicalize_with_free_vars(in_env); let solution = table.db.trait_solve( table.trait_env.krate, table.trait_env.block, canonicalized.value.clone(), ); match solution { Some(Solution::Unique(canonical_subst)) => { canonicalized.apply_solution( table, Canonical { binders: canonical_subst.binders, value: canonical_subst.value.subst, }, ); } Some(Solution::Ambig(Guidance::Definite(substs))) => { canonicalized.apply_solution(table, substs); } Some(_) => (), None => return IsValidCandidate::No, } } for goal in goals { if table.try_obligation(goal).is_none() { return IsValidCandidate::No; } } IsValidCandidate::Yes }) } pub fn implements_trait( ty: &Canonical, db: &dyn HirDatabase, env: &TraitEnvironment, trait_: TraitId, ) -> bool { let goal = generic_implements_goal(db, env, trait_, ty); let solution = db.trait_solve(env.krate, env.block, goal.cast(Interner)); solution.is_some() } pub fn implements_trait_unique( ty: &Canonical, db: &dyn HirDatabase, env: &TraitEnvironment, trait_: TraitId, ) -> bool { let goal = generic_implements_goal(db, env, trait_, ty); let solution = db.trait_solve(env.krate, env.block, goal.cast(Interner)); matches!(solution, Some(crate::Solution::Unique(_))) } /// This creates Substs for a trait with the given Self type and type variables /// for all other parameters, to query Chalk with it. #[tracing::instrument(skip_all)] fn generic_implements_goal( db: &dyn HirDatabase, env: &TraitEnvironment, trait_: TraitId, self_ty: &Canonical, ) -> Canonical> { let binders = self_ty.binders.interned(); let trait_ref = TyBuilder::trait_ref(db, trait_) .push(self_ty.value.clone()) .fill_with_bound_vars(DebruijnIndex::INNERMOST, binders.len()) .build(); let kinds = binders.iter().cloned().chain(trait_ref.substitution.iter(Interner).skip(1).map(|it| { let vk = match it.data(Interner) { chalk_ir::GenericArgData::Ty(_) => { chalk_ir::VariableKind::Ty(chalk_ir::TyVariableKind::General) } chalk_ir::GenericArgData::Lifetime(_) => chalk_ir::VariableKind::Lifetime, chalk_ir::GenericArgData::Const(c) => { chalk_ir::VariableKind::Const(c.data(Interner).ty.clone()) } }; chalk_ir::WithKind::new(vk, UniverseIndex::ROOT) })); let binders = CanonicalVarKinds::from_iter(Interner, kinds); let obligation = trait_ref.cast(Interner); let value = InEnvironment::new(&env.env, obligation); Canonical { binders, value } } fn autoderef_method_receiver( table: &mut InferenceTable<'_>, ty: Ty, ) -> Vec<(Canonical, ReceiverAdjustments)> { let mut deref_chain: Vec<_> = Vec::new(); let mut autoderef = autoderef::Autoderef::new(table, ty, false); while let Some((ty, derefs)) = autoderef.next() { deref_chain.push(( autoderef.table.canonicalize(ty), ReceiverAdjustments { autoref: None, autoderefs: derefs, unsize_array: false }, )); } // As a last step, we can do array unsizing (that's the only unsizing that rustc does for method receivers!) if let Some((TyKind::Array(parameters, _), binders, adj)) = deref_chain.last().map(|(ty, adj)| (ty.value.kind(Interner), ty.binders.clone(), adj)) { let unsized_ty = TyKind::Slice(parameters.clone()).intern(Interner); deref_chain.push(( Canonical { value: unsized_ty, binders }, ReceiverAdjustments { unsize_array: true, ..adj.clone() }, )); } deref_chain }