//! Helper functions for working with def, which don't need to be a separate //! query, but can't be computed directly from `*Data` (ie, which need a `db`). use std::iter; use base_db::CrateId; use chalk_ir::{fold::Shift, BoundVar, DebruijnIndex}; use hir_def::{ db::DefDatabase, generics::{ GenericParams, TypeOrConstParamData, TypeParamData, TypeParamProvenance, WherePredicate, WherePredicateTypeTarget, }, intern::Interned, path::Path, resolver::{HasResolver, TypeNs}, type_ref::{TraitBoundModifier, TypeRef}, GenericDefId, ItemContainerId, Lookup, TraitId, TypeAliasId, TypeOrConstParamId, }; use hir_expand::name::{name, Name}; use rustc_hash::FxHashSet; use smallvec::{smallvec, SmallVec}; use syntax::SmolStr; use crate::{ db::HirDatabase, ChalkTraitId, Interner, Substitution, TraitRef, TraitRefExt, TyKind, WhereClause, }; pub(crate) fn fn_traits(db: &dyn DefDatabase, krate: CrateId) -> impl Iterator { [ db.lang_item(krate, SmolStr::new_inline("fn")), db.lang_item(krate, SmolStr::new_inline("fn_mut")), db.lang_item(krate, SmolStr::new_inline("fn_once")), ] .into_iter() .flatten() .flat_map(|it| it.as_trait()) } fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> SmallVec<[TraitId; 4]> { let resolver = trait_.resolver(db); // returning the iterator directly doesn't easily work because of // lifetime problems, but since there usually shouldn't be more than a // few direct traits this should be fine (we could even use some kind of // SmallVec if performance is a concern) let generic_params = db.generic_params(trait_.into()); let trait_self = generic_params.find_trait_self_param(); generic_params .where_predicates .iter() .filter_map(|pred| match pred { WherePredicate::ForLifetime { target, bound, .. } | WherePredicate::TypeBound { target, bound } => match target { WherePredicateTypeTarget::TypeRef(type_ref) => match &**type_ref { TypeRef::Path(p) if p == &Path::from(name![Self]) => bound.as_path(), _ => None, }, WherePredicateTypeTarget::TypeOrConstParam(local_id) if Some(*local_id) == trait_self => { bound.as_path() } _ => None, }, WherePredicate::Lifetime { .. } => None, }) .filter_map(|(path, bound_modifier)| match bound_modifier { TraitBoundModifier::None => Some(path), TraitBoundModifier::Maybe => None, }) .filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path.mod_path()) { Some(TypeNs::TraitId(t)) => Some(t), _ => None, }) .collect() } fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef) -> Vec { // returning the iterator directly doesn't easily work because of // lifetime problems, but since there usually shouldn't be more than a // few direct traits this should be fine (we could even use some kind of // SmallVec if performance is a concern) let generic_params = db.generic_params(trait_ref.hir_trait_id().into()); let trait_self = match generic_params.find_trait_self_param() { Some(p) => TypeOrConstParamId { parent: trait_ref.hir_trait_id().into(), local_id: p }, None => return Vec::new(), }; db.generic_predicates_for_param(trait_self.parent, trait_self, None) .iter() .filter_map(|pred| { pred.as_ref().filter_map(|pred| match pred.skip_binders() { // FIXME: how to correctly handle higher-ranked bounds here? WhereClause::Implemented(tr) => Some( tr.clone() .shifted_out_to(Interner, DebruijnIndex::ONE) .expect("FIXME unexpected higher-ranked trait bound"), ), _ => None, }) }) .map(|pred| pred.substitute(Interner, &trait_ref.substitution)) .collect() } /// Returns an iterator over the whole super trait hierarchy (including the /// trait itself). pub fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> SmallVec<[TraitId; 4]> { // we need to take care a bit here to avoid infinite loops in case of cycles // (i.e. if we have `trait A: B; trait B: A;`) let mut result = smallvec![trait_]; let mut i = 0; while let Some(&t) = result.get(i) { // yeah this is quadratic, but trait hierarchies should be flat // enough that this doesn't matter for tt in direct_super_traits(db, t) { if !result.contains(&tt) { result.push(tt); } } i += 1; } result } /// Given a trait ref (`Self: Trait`), builds all the implied trait refs for /// super traits. The original trait ref will be included. So the difference to /// `all_super_traits` is that we keep track of type parameters; for example if /// we have `Self: Trait` and `Trait: OtherTrait` we'll get /// `Self: OtherTrait`. pub(super) fn all_super_trait_refs(db: &dyn HirDatabase, trait_ref: TraitRef) -> SuperTraits { SuperTraits { db, seen: iter::once(trait_ref.trait_id).collect(), stack: vec![trait_ref] } } pub(super) struct SuperTraits<'a> { db: &'a dyn HirDatabase, stack: Vec, seen: FxHashSet, } impl<'a> SuperTraits<'a> { fn elaborate(&mut self, trait_ref: &TraitRef) { let mut trait_refs = direct_super_trait_refs(self.db, trait_ref); trait_refs.retain(|tr| !self.seen.contains(&tr.trait_id)); self.stack.extend(trait_refs); } } impl<'a> Iterator for SuperTraits<'a> { type Item = TraitRef; fn next(&mut self) -> Option { if let Some(next) = self.stack.pop() { self.elaborate(&next); Some(next) } else { None } } } pub(super) fn associated_type_by_name_including_super_traits( db: &dyn HirDatabase, trait_ref: TraitRef, name: &Name, ) -> Option<(TraitRef, TypeAliasId)> { all_super_trait_refs(db, trait_ref).find_map(|t| { let assoc_type = db.trait_data(t.hir_trait_id()).associated_type_by_name(name)?; Some((t, assoc_type)) }) } pub(crate) fn generics(db: &dyn DefDatabase, def: GenericDefId) -> Generics { let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def))); Generics { def, params: db.generic_params(def), parent_generics } } #[derive(Debug)] pub(crate) struct Generics { def: GenericDefId, pub(crate) params: Interned, parent_generics: Option>, } impl Generics { // FIXME: we should drop this and handle const and type generics at the same time pub(crate) fn type_iter<'a>( &'a self, ) -> impl Iterator + 'a { self.parent_generics .as_ref() .into_iter() .flat_map(|it| { it.params .type_iter() .map(move |(local_id, p)| (TypeOrConstParamId { parent: it.def, local_id }, p)) }) .chain( self.params.type_iter().map(move |(local_id, p)| { (TypeOrConstParamId { parent: self.def, local_id }, p) }), ) } pub(crate) fn toc_iter<'a>( &'a self, ) -> impl Iterator + 'a { self.parent_generics .as_ref() .into_iter() .flat_map(|it| { it.params .toc_iter() .map(move |(local_id, p)| (TypeOrConstParamId { parent: it.def, local_id }, p)) }) .chain( self.params.toc_iter().map(move |(local_id, p)| { (TypeOrConstParamId { parent: self.def, local_id }, p) }), ) } pub(crate) fn iter_parent<'a>( &'a self, ) -> impl Iterator + 'a { self.parent_generics.as_ref().into_iter().flat_map(|it| { it.params .tocs .iter() .map(move |(local_id, p)| (TypeOrConstParamId { parent: it.def, local_id }, p)) }) } pub(crate) fn len(&self) -> usize { self.len_split().0 } /// (total, parents, child) pub(crate) fn len_split(&self) -> (usize, usize, usize) { let parent = self.parent_generics.as_ref().map_or(0, |p| p.len()); let child = self.params.tocs.len(); (parent + child, parent, child) } /// (parent total, self param, type param list, const param list, impl trait) pub(crate) fn provenance_split(&self) -> (usize, usize, usize, usize, usize) { let parent = self.parent_generics.as_ref().map_or(0, |p| p.len()); let self_params = self .params .tocs .iter() .filter_map(|x| x.1.type_param()) .filter(|p| p.provenance == TypeParamProvenance::TraitSelf) .count(); let type_params = self .params .tocs .iter() .filter_map(|x| x.1.type_param()) .filter(|p| p.provenance == TypeParamProvenance::TypeParamList) .count(); let const_params = self.params.tocs.iter().filter_map(|x| x.1.const_param()).count(); let impl_trait_params = self .params .tocs .iter() .filter_map(|x| x.1.type_param()) .filter(|p| p.provenance == TypeParamProvenance::ArgumentImplTrait) .count(); (parent, self_params, type_params, const_params, impl_trait_params) } pub(crate) fn param_idx(&self, param: TypeOrConstParamId) -> Option { Some(self.find_param(param)?.0) } fn find_param(&self, param: TypeOrConstParamId) -> Option<(usize, &TypeOrConstParamData)> { if param.parent == self.def { let (idx, (_local_id, data)) = self .params .tocs .iter() .enumerate() .find(|(_, (idx, _))| *idx == param.local_id) .unwrap(); let (_total, parent_len, _child) = self.len_split(); Some((parent_len + idx, data)) } else { self.parent_generics.as_ref().and_then(|g| g.find_param(param)) } } /// Returns a Substitution that replaces each parameter by a bound variable. pub(crate) fn bound_vars_subst(&self, debruijn: DebruijnIndex) -> Substitution { Substitution::from_iter( Interner, self.toc_iter() .enumerate() .map(|(idx, _)| TyKind::BoundVar(BoundVar::new(debruijn, idx)).intern(Interner)), ) } /// Returns a Substitution that replaces each parameter by itself (i.e. `Ty::Param`). pub(crate) fn type_params_subst(&self, db: &dyn HirDatabase) -> Substitution { Substitution::from_iter( Interner, self.toc_iter().map(|(id, _)| { TyKind::Placeholder(crate::to_placeholder_idx(db, id)).intern(Interner) }), ) } } fn parent_generic_def(db: &dyn DefDatabase, def: GenericDefId) -> Option { let container = match def { GenericDefId::FunctionId(it) => it.lookup(db).container, GenericDefId::TypeAliasId(it) => it.lookup(db).container, GenericDefId::ConstId(it) => it.lookup(db).container, GenericDefId::EnumVariantId(it) => return Some(it.parent.into()), GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) => return None, }; match container { ItemContainerId::ImplId(it) => Some(it.into()), ItemContainerId::TraitId(it) => Some(it.into()), ItemContainerId::ModuleId(_) | ItemContainerId::ExternBlockId(_) => None, } }