//! Coercion logic. Coercions are certain type conversions that can implicitly //! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions //! like going from `&Vec` to `&[T]`. //! //! See and //! `rustc_hir_analysis/check/coercion.rs`. use std::iter; use chalk_ir::{cast::Cast, BoundVar, Goal, Mutability, TyKind, TyVariableKind}; use hir_def::{ hir::ExprId, lang_item::{LangItem, LangItemTarget}, }; use stdx::always; use triomphe::Arc; use crate::{ autoderef::{Autoderef, AutoderefKind}, db::HirDatabase, infer::{ Adjust, Adjustment, AutoBorrow, InferOk, InferenceContext, OverloadedDeref, PointerCast, TypeError, TypeMismatch, }, static_lifetime, utils::ClosureSubst, Canonical, DomainGoal, FnAbi, FnPointer, FnSig, Guidance, InEnvironment, Interner, Solution, Substitution, TraitEnvironment, Ty, TyBuilder, TyExt, }; use super::unify::InferenceTable; pub(crate) type CoerceResult = Result, Ty)>, TypeError>; /// Do not require any adjustments, i.e. coerce `x -> x`. fn identity(_: Ty) -> Vec { vec![] } fn simple(kind: Adjust) -> impl FnOnce(Ty) -> Vec { move |target| vec![Adjustment { kind, target }] } /// This always returns `Ok(...)`. fn success( adj: Vec, target: Ty, goals: Vec>>, ) -> CoerceResult { Ok(InferOk { goals, value: (adj, target) }) } pub(super) enum CoercionCause { // FIXME: Make better use of this. Right now things like return and break without a value // use it to point to themselves, causing us to report a mismatch on those expressions even // though technically they themselves are `!` Expr(ExprId), } #[derive(Clone, Debug)] pub(super) struct CoerceMany { expected_ty: Ty, final_ty: Option, expressions: Vec, } impl CoerceMany { pub(super) fn new(expected: Ty) -> Self { CoerceMany { expected_ty: expected, final_ty: None, expressions: vec![] } } /// Returns the "expected type" with which this coercion was /// constructed. This represents the "downward propagated" type /// that was given to us at the start of typing whatever construct /// we are typing (e.g., the match expression). /// /// Typically, this is used as the expected type when /// type-checking each of the alternative expressions whose types /// we are trying to merge. pub(super) fn expected_ty(&self) -> Ty { self.expected_ty.clone() } /// Returns the current "merged type", representing our best-guess /// at the LUB of the expressions we've seen so far (if any). This /// isn't *final* until you call `self.complete()`, which will return /// the merged type. pub(super) fn merged_ty(&self) -> Ty { self.final_ty.clone().unwrap_or_else(|| self.expected_ty.clone()) } pub(super) fn complete(self, ctx: &mut InferenceContext<'_>) -> Ty { if let Some(final_ty) = self.final_ty { final_ty } else { ctx.result.standard_types.never.clone() } } pub(super) fn coerce_forced_unit( &mut self, ctx: &mut InferenceContext<'_>, cause: CoercionCause, ) { self.coerce(ctx, None, &ctx.result.standard_types.unit.clone(), cause) } /// Merge two types from different branches, with possible coercion. /// /// Mostly this means trying to coerce one to the other, but /// - if we have two function types for different functions or closures, we need to /// coerce both to function pointers; /// - if we were concerned with lifetime subtyping, we'd need to look for a /// least upper bound. pub(super) fn coerce( &mut self, ctx: &mut InferenceContext<'_>, expr: Option, expr_ty: &Ty, cause: CoercionCause, ) { let expr_ty = ctx.resolve_ty_shallow(expr_ty); self.expected_ty = ctx.resolve_ty_shallow(&self.expected_ty); // Special case: two function types. Try to coerce both to // pointers to have a chance at getting a match. See // https://github.com/rust-lang/rust/blob/7b805396bf46dce972692a6846ce2ad8481c5f85/src/librustc_typeck/check/coercion.rs#L877-L916 let sig = match (self.merged_ty().kind(Interner), expr_ty.kind(Interner)) { (TyKind::FnDef(x, _), TyKind::FnDef(y, _)) if x == y => None, (TyKind::Closure(x, _), TyKind::Closure(y, _)) if x == y => None, (TyKind::FnDef(..) | TyKind::Closure(..), TyKind::FnDef(..) | TyKind::Closure(..)) => { // FIXME: we're ignoring safety here. To be more correct, if we have one FnDef and one Closure, // we should be coercing the closure to a fn pointer of the safety of the FnDef cov_mark::hit!(coerce_fn_reification); let sig = self.merged_ty().callable_sig(ctx.db).expect("FnDef without callable sig"); Some(sig) } _ => None, }; if let Some(sig) = sig { let target_ty = TyKind::Function(sig.to_fn_ptr()).intern(Interner); let result1 = ctx.table.coerce_inner(self.merged_ty(), &target_ty); let result2 = ctx.table.coerce_inner(expr_ty.clone(), &target_ty); if let (Ok(result1), Ok(result2)) = (result1, result2) { ctx.table.register_infer_ok(InferOk { value: (), goals: result1.goals }); for &e in &self.expressions { ctx.write_expr_adj(e, result1.value.0.clone()); } ctx.table.register_infer_ok(InferOk { value: (), goals: result2.goals }); if let Some(expr) = expr { ctx.write_expr_adj(expr, result2.value.0); self.expressions.push(expr); } return self.final_ty = Some(target_ty); } } // It might not seem like it, but order is important here: If the expected // type is a type variable and the new one is `!`, trying it the other // way around first would mean we make the type variable `!`, instead of // just marking it as possibly diverging. if let Ok(res) = ctx.coerce(expr, &expr_ty, &self.merged_ty()) { self.final_ty = Some(res); } else if let Ok(res) = ctx.coerce(expr, &self.merged_ty(), &expr_ty) { self.final_ty = Some(res); } else { match cause { CoercionCause::Expr(id) => { ctx.result.type_mismatches.insert( id.into(), TypeMismatch { expected: self.merged_ty(), actual: expr_ty.clone() }, ); } } cov_mark::hit!(coerce_merge_fail_fallback); } if let Some(expr) = expr { self.expressions.push(expr); } } } pub fn could_coerce( db: &dyn HirDatabase, env: Arc, tys: &Canonical<(Ty, Ty)>, ) -> bool { coerce(db, env, tys).is_ok() } pub(crate) fn coerce( db: &dyn HirDatabase, env: Arc, tys: &Canonical<(Ty, Ty)>, ) -> Result<(Vec, Ty), TypeError> { let mut table = InferenceTable::new(db, env); let vars = table.fresh_subst(tys.binders.as_slice(Interner)); let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner); let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner); let (adjustments, ty) = table.coerce(&ty1_with_vars, &ty2_with_vars)?; // default any type vars that weren't unified back to their original bound vars // (kind of hacky) let find_var = |iv| { vars.iter(Interner).position(|v| match v.interned() { chalk_ir::GenericArgData::Ty(ty) => ty.inference_var(Interner), chalk_ir::GenericArgData::Lifetime(lt) => lt.inference_var(Interner), chalk_ir::GenericArgData::Const(c) => c.inference_var(Interner), } == Some(iv)) }; let fallback = |iv, kind, default, binder| match kind { chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv) .map_or(default, |i| BoundVar::new(binder, i).to_ty(Interner).cast(Interner)), chalk_ir::VariableKind::Lifetime => find_var(iv) .map_or(default, |i| BoundVar::new(binder, i).to_lifetime(Interner).cast(Interner)), chalk_ir::VariableKind::Const(ty) => find_var(iv) .map_or(default, |i| BoundVar::new(binder, i).to_const(Interner, ty).cast(Interner)), }; // FIXME also map the types in the adjustments Ok((adjustments, table.resolve_with_fallback(ty, &fallback))) } impl InferenceContext<'_> { /// Unify two types, but may coerce the first one to the second one /// using "implicit coercion rules" if needed. pub(super) fn coerce( &mut self, expr: Option, from_ty: &Ty, to_ty: &Ty, ) -> Result { let from_ty = self.resolve_ty_shallow(from_ty); let to_ty = self.resolve_ty_shallow(to_ty); let (adjustments, ty) = self.table.coerce(&from_ty, &to_ty)?; if let Some(expr) = expr { self.write_expr_adj(expr, adjustments); } Ok(ty) } } impl InferenceTable<'_> { /// Unify two types, but may coerce the first one to the second one /// using "implicit coercion rules" if needed. pub(crate) fn coerce( &mut self, from_ty: &Ty, to_ty: &Ty, ) -> Result<(Vec, Ty), TypeError> { let from_ty = self.resolve_ty_shallow(from_ty); let to_ty = self.resolve_ty_shallow(to_ty); match self.coerce_inner(from_ty, &to_ty) { Ok(InferOk { value: (adjustments, ty), goals }) => { self.register_infer_ok(InferOk { value: (), goals }); Ok((adjustments, ty)) } Err(e) => { // FIXME deal with error Err(e) } } } fn coerce_inner(&mut self, from_ty: Ty, to_ty: &Ty) -> CoerceResult { if from_ty.is_never() { // Subtle: If we are coercing from `!` to `?T`, where `?T` is an unbound // type variable, we want `?T` to fallback to `!` if not // otherwise constrained. An example where this arises: // // let _: Option = Some({ return; }); // // here, we would coerce from `!` to `?T`. if let TyKind::InferenceVar(tv, TyVariableKind::General) = to_ty.kind(Interner) { self.set_diverging(*tv, true); } return success(simple(Adjust::NeverToAny)(to_ty.clone()), to_ty.clone(), vec![]); } // Consider coercing the subtype to a DST if let Ok(ret) = self.try_coerce_unsized(&from_ty, to_ty) { return Ok(ret); } // Examine the supertype and consider auto-borrowing. match to_ty.kind(Interner) { TyKind::Raw(mt, _) => return self.coerce_ptr(from_ty, to_ty, *mt), TyKind::Ref(mt, _, _) => return self.coerce_ref(from_ty, to_ty, *mt), _ => {} } match from_ty.kind(Interner) { TyKind::FnDef(..) => { // Function items are coercible to any closure // type; function pointers are not (that would // require double indirection). // Additionally, we permit coercion of function // items to drop the unsafe qualifier. self.coerce_from_fn_item(from_ty, to_ty) } TyKind::Function(from_fn_ptr) => { // We permit coercion of fn pointers to drop the // unsafe qualifier. self.coerce_from_fn_pointer(from_ty.clone(), from_fn_ptr, to_ty) } TyKind::Closure(_, from_substs) => { // Non-capturing closures are coercible to // function pointers or unsafe function pointers. // It cannot convert closures that require unsafe. self.coerce_closure_to_fn(from_ty.clone(), from_substs, to_ty) } _ => { // Otherwise, just use unification rules. self.unify_and(&from_ty, to_ty, identity) } } } /// Unify two types (using sub or lub) and produce a specific coercion. fn unify_and(&mut self, t1: &Ty, t2: &Ty, f: F) -> CoerceResult where F: FnOnce(Ty) -> Vec, { self.try_unify(t1, t2) .and_then(|InferOk { goals, .. }| success(f(t1.clone()), t1.clone(), goals)) } fn coerce_ptr(&mut self, from_ty: Ty, to_ty: &Ty, to_mt: Mutability) -> CoerceResult { let (is_ref, from_mt, from_inner) = match from_ty.kind(Interner) { TyKind::Ref(mt, _, ty) => (true, mt, ty), TyKind::Raw(mt, ty) => (false, mt, ty), _ => return self.unify_and(&from_ty, to_ty, identity), }; coerce_mutabilities(*from_mt, to_mt)?; // Check that the types which they point at are compatible. let from_raw = TyKind::Raw(to_mt, from_inner.clone()).intern(Interner); // Although references and unsafe ptrs have the same // representation, we still register an Adjust::DerefRef so that // regionck knows that the region for `a` must be valid here. if is_ref { self.unify_and(&from_raw, to_ty, |target| { vec![ Adjustment { kind: Adjust::Deref(None), target: from_inner.clone() }, Adjustment { kind: Adjust::Borrow(AutoBorrow::RawPtr(to_mt)), target }, ] }) } else if *from_mt != to_mt { self.unify_and( &from_raw, to_ty, simple(Adjust::Pointer(PointerCast::MutToConstPointer)), ) } else { self.unify_and(&from_raw, to_ty, identity) } } /// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`. /// To match `A` with `B`, autoderef will be performed, /// calling `deref`/`deref_mut` where necessary. fn coerce_ref(&mut self, from_ty: Ty, to_ty: &Ty, to_mt: Mutability) -> CoerceResult { let from_mt = match from_ty.kind(Interner) { &TyKind::Ref(mt, _, _) => { coerce_mutabilities(mt, to_mt)?; mt } _ => return self.unify_and(&from_ty, to_ty, identity), }; // NOTE: this code is mostly copied and adapted from rustc, and // currently more complicated than necessary, carrying errors around // etc.. This complication will become necessary when we actually track // details of coercion errors though, so I think it's useful to leave // the structure like it is. let snapshot = self.snapshot(); let mut autoderef = Autoderef::new(self, from_ty.clone(), false); let mut first_error = None; let mut found = None; while let Some((referent_ty, autoderefs)) = autoderef.next() { if autoderefs == 0 { // Don't let this pass, otherwise it would cause // &T to autoref to &&T. continue; } // At this point, we have deref'd `a` to `referent_ty`. So // imagine we are coercing from `&'a mut Vec` to `&'b mut [T]`. // In the autoderef loop for `&'a mut Vec`, we would get // three callbacks: // // - `&'a mut Vec` -- 0 derefs, just ignore it // - `Vec` -- 1 deref // - `[T]` -- 2 deref // // At each point after the first callback, we want to // check to see whether this would match out target type // (`&'b mut [T]`) if we autoref'd it. We can't just // compare the referent types, though, because we still // have to consider the mutability. E.g., in the case // we've been considering, we have an `&mut` reference, so // the `T` in `[T]` needs to be unified with equality. // // Therefore, we construct reference types reflecting what // the types will be after we do the final auto-ref and // compare those. Note that this means we use the target // mutability [1], since it may be that we are coercing // from `&mut T` to `&U`. let lt = static_lifetime(); // FIXME: handle lifetimes correctly, see rustc let derefd_from_ty = TyKind::Ref(to_mt, lt, referent_ty).intern(Interner); match autoderef.table.try_unify(&derefd_from_ty, to_ty) { Ok(result) => { found = Some(result.map(|()| derefd_from_ty)); break; } Err(err) => { if first_error.is_none() { first_error = Some(err); } } } } // Extract type or return an error. We return the first error // we got, which should be from relating the "base" type // (e.g., in example above, the failure from relating `Vec` // to the target type), since that should be the least // confusing. let InferOk { value: ty, goals } = match found { Some(d) => d, None => { self.rollback_to(snapshot); let err = first_error.expect("coerce_borrowed_pointer had no error"); return Err(err); } }; if ty == from_ty && from_mt == Mutability::Not && autoderef.step_count() == 1 { // As a special case, if we would produce `&'a *x`, that's // a total no-op. We end up with the type `&'a T` just as // we started with. In that case, just skip it // altogether. This is just an optimization. // // Note that for `&mut`, we DO want to reborrow -- // otherwise, this would be a move, which might be an // error. For example `foo(self.x)` where `self` and // `self.x` both have `&mut `type would be a move of // `self.x`, but we auto-coerce it to `foo(&mut *self.x)`, // which is a borrow. always!(to_mt == Mutability::Not); // can only coerce &T -> &U return success(vec![], ty, goals); } let mut adjustments = auto_deref_adjust_steps(&autoderef); adjustments .push(Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(to_mt)), target: ty.clone() }); success(adjustments, ty, goals) } /// Attempts to coerce from the type of a Rust function item into a function pointer. fn coerce_from_fn_item(&mut self, from_ty: Ty, to_ty: &Ty) -> CoerceResult { match to_ty.kind(Interner) { TyKind::Function(_) => { let from_sig = from_ty.callable_sig(self.db).expect("FnDef had no sig"); // FIXME check ABI: Intrinsics are not coercible to function pointers // FIXME Safe `#[target_feature]` functions are not assignable to safe fn pointers (RFC 2396) // FIXME rustc normalizes assoc types in the sig here, not sure if necessary let from_sig = from_sig.to_fn_ptr(); let from_fn_pointer = TyKind::Function(from_sig.clone()).intern(Interner); let ok = self.coerce_from_safe_fn( from_fn_pointer.clone(), &from_sig, to_ty, |unsafe_ty| { vec![ Adjustment { kind: Adjust::Pointer(PointerCast::ReifyFnPointer), target: from_fn_pointer, }, Adjustment { kind: Adjust::Pointer(PointerCast::UnsafeFnPointer), target: unsafe_ty, }, ] }, simple(Adjust::Pointer(PointerCast::ReifyFnPointer)), )?; Ok(ok) } _ => self.unify_and(&from_ty, to_ty, identity), } } fn coerce_from_fn_pointer( &mut self, from_ty: Ty, from_f: &FnPointer, to_ty: &Ty, ) -> CoerceResult { self.coerce_from_safe_fn( from_ty, from_f, to_ty, simple(Adjust::Pointer(PointerCast::UnsafeFnPointer)), identity, ) } fn coerce_from_safe_fn( &mut self, from_ty: Ty, from_fn_ptr: &FnPointer, to_ty: &Ty, to_unsafe: F, normal: G, ) -> CoerceResult where F: FnOnce(Ty) -> Vec, G: FnOnce(Ty) -> Vec, { if let TyKind::Function(to_fn_ptr) = to_ty.kind(Interner) { if let (chalk_ir::Safety::Safe, chalk_ir::Safety::Unsafe) = (from_fn_ptr.sig.safety, to_fn_ptr.sig.safety) { let from_unsafe = TyKind::Function(safe_to_unsafe_fn_ty(from_fn_ptr.clone())).intern(Interner); return self.unify_and(&from_unsafe, to_ty, to_unsafe); } } self.unify_and(&from_ty, to_ty, normal) } /// Attempts to coerce from the type of a non-capturing closure into a /// function pointer. fn coerce_closure_to_fn( &mut self, from_ty: Ty, from_substs: &Substitution, to_ty: &Ty, ) -> CoerceResult { match to_ty.kind(Interner) { // if from_substs is non-capturing (FIXME) TyKind::Function(fn_ty) => { // We coerce the closure, which has fn type // `extern "rust-call" fn((arg0,arg1,...)) -> _` // to // `fn(arg0,arg1,...) -> _` // or // `unsafe fn(arg0,arg1,...) -> _` let safety = fn_ty.sig.safety; let pointer_ty = coerce_closure_fn_ty(from_substs, safety); self.unify_and( &pointer_ty, to_ty, simple(Adjust::Pointer(PointerCast::ClosureFnPointer(safety))), ) } _ => self.unify_and(&from_ty, to_ty, identity), } } /// Coerce a type using `from_ty: CoerceUnsized` /// /// See: fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> CoerceResult { // These 'if' statements require some explanation. // The `CoerceUnsized` trait is special - it is only // possible to write `impl CoerceUnsized for A` where // A and B have 'matching' fields. This rules out the following // two types of blanket impls: // // `impl CoerceUnsized for SomeType` // `impl CoerceUnsized for T` // // Both of these trigger a special `CoerceUnsized`-related error (E0376) // // We can take advantage of this fact to avoid performing unnecessary work. // If either `source` or `target` is a type variable, then any applicable impl // would need to be generic over the self-type (`impl CoerceUnsized for T`) // or generic over the `CoerceUnsized` type parameter (`impl CoerceUnsized for // SomeType`). // // However, these are exactly the kinds of impls which are forbidden by // the compiler! Therefore, we can be sure that coercion will always fail // when either the source or target type is a type variable. This allows us // to skip performing any trait selection, and immediately bail out. if from_ty.is_ty_var() { return Err(TypeError); } if to_ty.is_ty_var() { return Err(TypeError); } // Handle reborrows before trying to solve `Source: CoerceUnsized`. let reborrow = match (from_ty.kind(Interner), to_ty.kind(Interner)) { (TyKind::Ref(from_mt, _, from_inner), &TyKind::Ref(to_mt, _, _)) => { coerce_mutabilities(*from_mt, to_mt)?; let lt = static_lifetime(); Some(( Adjustment { kind: Adjust::Deref(None), target: from_inner.clone() }, Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(to_mt)), target: TyKind::Ref(to_mt, lt, from_inner.clone()).intern(Interner), }, )) } (TyKind::Ref(from_mt, _, from_inner), &TyKind::Raw(to_mt, _)) => { coerce_mutabilities(*from_mt, to_mt)?; Some(( Adjustment { kind: Adjust::Deref(None), target: from_inner.clone() }, Adjustment { kind: Adjust::Borrow(AutoBorrow::RawPtr(to_mt)), target: TyKind::Raw(to_mt, from_inner.clone()).intern(Interner), }, )) } _ => None, }; let coerce_from = reborrow.as_ref().map_or_else(|| from_ty.clone(), |(_, adj)| adj.target.clone()); let krate = self.trait_env.krate; let coerce_unsized_trait = match self.db.lang_item(krate, LangItem::CoerceUnsized) { Some(LangItemTarget::Trait(trait_)) => trait_, _ => return Err(TypeError), }; let coerce_unsized_tref = { let b = TyBuilder::trait_ref(self.db, coerce_unsized_trait); if b.remaining() != 2 { // The CoerceUnsized trait should have two generic params: Self and T. return Err(TypeError); } b.push(coerce_from).push(to_ty.clone()).build() }; let goal: InEnvironment = InEnvironment::new(&self.trait_env.env, coerce_unsized_tref.cast(Interner)); let canonicalized = self.canonicalize(goal); // FIXME: rustc's coerce_unsized is more specialized -- it only tries to // solve `CoerceUnsized` and `Unsize` goals at this point and leaves the // rest for later. Also, there's some logic about sized type variables. // Need to find out in what cases this is necessary let solution = self .db .trait_solve(krate, self.trait_env.block, canonicalized.value.clone().cast(Interner)) .ok_or(TypeError)?; match solution { Solution::Unique(v) => { canonicalized.apply_solution( self, Canonical { binders: v.binders, // FIXME handle constraints value: v.value.subst, }, ); } Solution::Ambig(Guidance::Definite(subst)) => { // FIXME need to record an obligation here canonicalized.apply_solution(self, subst) } // FIXME actually we maybe should also accept unknown guidance here _ => return Err(TypeError), }; let unsize = Adjustment { kind: Adjust::Pointer(PointerCast::Unsize), target: to_ty.clone() }; let adjustments = match reborrow { None => vec![unsize], Some((deref, autoref)) => vec![deref, autoref, unsize], }; success(adjustments, to_ty.clone(), vec![]) } } fn coerce_closure_fn_ty(closure_substs: &Substitution, safety: chalk_ir::Safety) -> Ty { let closure_sig = ClosureSubst(closure_substs).sig_ty().clone(); match closure_sig.kind(Interner) { TyKind::Function(fn_ty) => TyKind::Function(FnPointer { num_binders: fn_ty.num_binders, sig: FnSig { safety, abi: FnAbi::Rust, variadic: fn_ty.sig.variadic }, substitution: fn_ty.substitution.clone(), }) .intern(Interner), _ => TyKind::Error.intern(Interner), } } fn safe_to_unsafe_fn_ty(fn_ty: FnPointer) -> FnPointer { FnPointer { num_binders: fn_ty.num_binders, sig: FnSig { safety: chalk_ir::Safety::Unsafe, ..fn_ty.sig }, substitution: fn_ty.substitution, } } fn coerce_mutabilities(from: Mutability, to: Mutability) -> Result<(), TypeError> { match (from, to) { (Mutability::Mut, Mutability::Mut | Mutability::Not) | (Mutability::Not, Mutability::Not) => Ok(()), (Mutability::Not, Mutability::Mut) => Err(TypeError), } } pub(super) fn auto_deref_adjust_steps(autoderef: &Autoderef<'_, '_>) -> Vec { let steps = autoderef.steps(); let targets = steps.iter().skip(1).map(|(_, ty)| ty.clone()).chain(iter::once(autoderef.final_ty())); steps .iter() .map(|(kind, _source)| match kind { // We do not know what kind of deref we require at this point yet AutoderefKind::Overloaded => Some(OverloadedDeref(None)), AutoderefKind::Builtin => None, }) .zip(targets) .map(|(autoderef, target)| Adjustment { kind: Adjust::Deref(autoderef), target }) .collect() }