use std::iter; use hir::{Adt, HasSource, ModuleDef, Semantics}; use ide_db::helpers::{mod_path_to_ast, FamousDefs}; use ide_db::RootDatabase; use itertools::Itertools; use syntax::ast::{self, make, AstNode, MatchArm, NameOwner, Pat}; use test_utils::mark; use crate::{ utils::{render_snippet, Cursor}, AssistContext, AssistId, AssistKind, Assists, }; // Assist: fill_match_arms // // Adds missing clauses to a `match` expression. // // ``` // enum Action { Move { distance: u32 }, Stop } // // fn handle(action: Action) { // match action { // <|> // } // } // ``` // -> // ``` // enum Action { Move { distance: u32 }, Stop } // // fn handle(action: Action) { // match action { // $0Action::Move { distance } => {} // Action::Stop => {} // } // } // ``` pub(crate) fn fill_match_arms(acc: &mut Assists, ctx: &AssistContext) -> Option<()> { let match_expr = ctx.find_node_at_offset::()?; let match_arm_list = match_expr.match_arm_list()?; let expr = match_expr.expr()?; let mut arms: Vec = match_arm_list.arms().collect(); if arms.len() == 1 { if let Some(Pat::WildcardPat(..)) = arms[0].pat() { arms.clear(); } } let module = ctx.sema.scope(expr.syntax()).module()?; let missing_arms: Vec = if let Some(enum_def) = resolve_enum_def(&ctx.sema, &expr) { let variants = enum_def.variants(ctx.db()); let mut variants = variants .into_iter() .filter_map(|variant| build_pat(ctx.db(), module, variant)) .filter(|variant_pat| is_variant_missing(&mut arms, variant_pat)) .map(|pat| make::match_arm(iter::once(pat), make::expr_empty_block())) .collect::>(); if Some(enum_def) == FamousDefs(&ctx.sema, Some(module.krate())).core_option_Option() { // Match `Some` variant first. mark::hit!(option_order); variants.reverse() } variants } else if let Some(enum_defs) = resolve_tuple_of_enum_def(&ctx.sema, &expr) { // Partial fill not currently supported for tuple of enums. if !arms.is_empty() { return None; } // We do not currently support filling match arms for a tuple // containing a single enum. if enum_defs.len() < 2 { return None; } // When calculating the match arms for a tuple of enums, we want // to create a match arm for each possible combination of enum // values. The `multi_cartesian_product` method transforms // Vec> into Vec<(EnumVariant, .., EnumVariant)> // where each tuple represents a proposed match arm. enum_defs .into_iter() .map(|enum_def| enum_def.variants(ctx.db())) .multi_cartesian_product() .map(|variants| { let patterns = variants.into_iter().filter_map(|variant| build_pat(ctx.db(), module, variant)); ast::Pat::from(make::tuple_pat(patterns)) }) .filter(|variant_pat| is_variant_missing(&mut arms, variant_pat)) .map(|pat| make::match_arm(iter::once(pat), make::expr_empty_block())) .collect() } else { return None; }; if missing_arms.is_empty() { return None; } let target = match_expr.syntax().text_range(); acc.add( AssistId("fill_match_arms", AssistKind::QuickFix), "Fill match arms", target, |builder| { let new_arm_list = match_arm_list.remove_placeholder(); let n_old_arms = new_arm_list.arms().count(); let new_arm_list = new_arm_list.append_arms(missing_arms); let first_new_arm = new_arm_list.arms().nth(n_old_arms); let old_range = match_arm_list.syntax().text_range(); match (first_new_arm, ctx.config.snippet_cap) { (Some(first_new_arm), Some(cap)) => { let extend_lifetime; let cursor = match first_new_arm.syntax().descendants().find_map(ast::WildcardPat::cast) { Some(it) => { extend_lifetime = it.syntax().clone(); Cursor::Replace(&extend_lifetime) } None => Cursor::Before(first_new_arm.syntax()), }; let snippet = render_snippet(cap, new_arm_list.syntax(), cursor); builder.replace_snippet(cap, old_range, snippet); } _ => builder.replace(old_range, new_arm_list.to_string()), } }, ) } fn is_variant_missing(existing_arms: &mut Vec, var: &Pat) -> bool { existing_arms.iter().filter_map(|arm| arm.pat()).all(|pat| { // Special casee OrPat as separate top-level pats let top_level_pats: Vec = match pat { Pat::OrPat(pats) => pats.pats().collect::>(), _ => vec![pat], }; !top_level_pats.iter().any(|pat| does_pat_match_variant(pat, var)) }) } fn does_pat_match_variant(pat: &Pat, var: &Pat) -> bool { let first_node_text = |pat: &Pat| pat.syntax().first_child().map(|node| node.text()); let pat_head = match pat { Pat::IdentPat(bind_pat) => { if let Some(p) = bind_pat.pat() { first_node_text(&p) } else { return false; } } pat => first_node_text(pat), }; let var_head = first_node_text(var); pat_head == var_head } fn resolve_enum_def(sema: &Semantics, expr: &ast::Expr) -> Option { sema.type_of_expr(&expr)?.autoderef(sema.db).find_map(|ty| match ty.as_adt() { Some(Adt::Enum(e)) => Some(e), _ => None, }) } fn resolve_tuple_of_enum_def( sema: &Semantics, expr: &ast::Expr, ) -> Option> { sema.type_of_expr(&expr)? .tuple_fields(sema.db) .iter() .map(|ty| { ty.autoderef(sema.db).find_map(|ty| match ty.as_adt() { Some(Adt::Enum(e)) => Some(e), // For now we only handle expansion for a tuple of enums. Here // we map non-enum items to None and rely on `collect` to // convert Vec> into Option>. _ => None, }) }) .collect() } fn build_pat(db: &RootDatabase, module: hir::Module, var: hir::Variant) -> Option { let path = mod_path_to_ast(&module.find_use_path(db, ModuleDef::from(var))?); // FIXME: use HIR for this; it doesn't currently expose struct vs. tuple vs. unit variants though #[allow(deprecated)] let pat: ast::Pat = match var.source_old(db).value.kind() { ast::StructKind::Tuple(field_list) => { let pats = iter::repeat(make::wildcard_pat().into()).take(field_list.fields().count()); make::tuple_struct_pat(path, pats).into() } ast::StructKind::Record(field_list) => { let pats = field_list.fields().map(|f| make::ident_pat(f.name().unwrap()).into()); make::record_pat(path, pats).into() } ast::StructKind::Unit => make::path_pat(path), }; Some(pat) } #[cfg(test)] mod tests { use ide_db::helpers::FamousDefs; use test_utils::mark; use crate::tests::{check_assist, check_assist_not_applicable, check_assist_target}; use super::fill_match_arms; #[test] fn all_match_arms_provided() { check_assist_not_applicable( fill_match_arms, r#" enum A { As, Bs{x:i32, y:Option}, Cs(i32, Option), } fn main() { match A::As<|> { A::As, A::Bs{x,y:Some(_)} => {} A::Cs(_, Some(_)) => {} } } "#, ); } #[test] fn tuple_of_non_enum() { // for now this case is not handled, although it potentially could be // in the future check_assist_not_applicable( fill_match_arms, r#" fn main() { match (0, false)<|> { } } "#, ); } #[test] fn partial_fill_record_tuple() { check_assist( fill_match_arms, r#" enum A { As, Bs { x: i32, y: Option }, Cs(i32, Option), } fn main() { match A::As<|> { A::Bs { x, y: Some(_) } => {} A::Cs(_, Some(_)) => {} } } "#, r#" enum A { As, Bs { x: i32, y: Option }, Cs(i32, Option), } fn main() { match A::As { A::Bs { x, y: Some(_) } => {} A::Cs(_, Some(_)) => {} $0A::As => {} } } "#, ); } #[test] fn partial_fill_or_pat() { check_assist( fill_match_arms, r#" enum A { As, Bs, Cs(Option) } fn main() { match A::As<|> { A::Cs(_) | A::Bs => {} } } "#, r#" enum A { As, Bs, Cs(Option) } fn main() { match A::As { A::Cs(_) | A::Bs => {} $0A::As => {} } } "#, ); } #[test] fn partial_fill() { check_assist( fill_match_arms, r#" enum A { As, Bs, Cs, Ds(String), Es(B) } enum B { Xs, Ys } fn main() { match A::As<|> { A::Bs if 0 < 1 => {} A::Ds(_value) => { let x = 1; } A::Es(B::Xs) => (), } } "#, r#" enum A { As, Bs, Cs, Ds(String), Es(B) } enum B { Xs, Ys } fn main() { match A::As { A::Bs if 0 < 1 => {} A::Ds(_value) => { let x = 1; } A::Es(B::Xs) => (), $0A::As => {} A::Cs => {} } } "#, ); } #[test] fn partial_fill_bind_pat() { check_assist( fill_match_arms, r#" enum A { As, Bs, Cs(Option) } fn main() { match A::As<|> { A::As(_) => {} a @ A::Bs(_) => {} } } "#, r#" enum A { As, Bs, Cs(Option) } fn main() { match A::As { A::As(_) => {} a @ A::Bs(_) => {} A::Cs(${0:_}) => {} } } "#, ); } #[test] fn fill_match_arms_empty_body() { check_assist( fill_match_arms, r#" enum A { As, Bs, Cs(String), Ds(String, String), Es { x: usize, y: usize } } fn main() { let a = A::As; match a<|> {} } "#, r#" enum A { As, Bs, Cs(String), Ds(String, String), Es { x: usize, y: usize } } fn main() { let a = A::As; match a { $0A::As => {} A::Bs => {} A::Cs(_) => {} A::Ds(_, _) => {} A::Es { x, y } => {} } } "#, ); } #[test] fn fill_match_arms_tuple_of_enum() { check_assist( fill_match_arms, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (a<|>, b) {} } "#, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (a, b) { $0(A::One, B::One) => {} (A::One, B::Two) => {} (A::Two, B::One) => {} (A::Two, B::Two) => {} } } "#, ); } #[test] fn fill_match_arms_tuple_of_enum_ref() { check_assist( fill_match_arms, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (&a<|>, &b) {} } "#, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (&a, &b) { $0(A::One, B::One) => {} (A::One, B::Two) => {} (A::Two, B::One) => {} (A::Two, B::Two) => {} } } "#, ); } #[test] fn fill_match_arms_tuple_of_enum_partial() { check_assist_not_applicable( fill_match_arms, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (a<|>, b) { (A::Two, B::One) => {} } } "#, ); } #[test] fn fill_match_arms_tuple_of_enum_not_applicable() { check_assist_not_applicable( fill_match_arms, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (a<|>, b) { (A::Two, B::One) => {} (A::One, B::One) => {} (A::One, B::Two) => {} (A::Two, B::Two) => {} } } "#, ); } #[test] fn fill_match_arms_single_element_tuple_of_enum() { // For now we don't hande the case of a single element tuple, but // we could handle this in the future if `make::tuple_pat` allowed // creating a tuple with a single pattern. check_assist_not_applicable( fill_match_arms, r#" enum A { One, Two } fn main() { let a = A::One; match (a<|>, ) { } } "#, ); } #[test] fn test_fill_match_arm_refs() { check_assist( fill_match_arms, r#" enum A { As } fn foo(a: &A) { match a<|> { } } "#, r#" enum A { As } fn foo(a: &A) { match a { $0A::As => {} } } "#, ); check_assist( fill_match_arms, r#" enum A { Es { x: usize, y: usize } } fn foo(a: &mut A) { match a<|> { } } "#, r#" enum A { Es { x: usize, y: usize } } fn foo(a: &mut A) { match a { $0A::Es { x, y } => {} } } "#, ); } #[test] fn fill_match_arms_target() { check_assist_target( fill_match_arms, r#" enum E { X, Y } fn main() { match E::X<|> {} } "#, "match E::X {}", ); } #[test] fn fill_match_arms_trivial_arm() { check_assist( fill_match_arms, r#" enum E { X, Y } fn main() { match E::X { <|>_ => {} } } "#, r#" enum E { X, Y } fn main() { match E::X { $0E::X => {} E::Y => {} } } "#, ); } #[test] fn fill_match_arms_qualifies_path() { check_assist( fill_match_arms, r#" mod foo { pub enum E { X, Y } } use foo::E::X; fn main() { match X { <|> } } "#, r#" mod foo { pub enum E { X, Y } } use foo::E::X; fn main() { match X { $0X => {} foo::E::Y => {} } } "#, ); } #[test] fn fill_match_arms_preserves_comments() { check_assist( fill_match_arms, r#" enum A { One, Two } fn foo(a: A) { match a { // foo bar baz<|> A::One => {} // This is where the rest should be } } "#, r#" enum A { One, Two } fn foo(a: A) { match a { // foo bar baz A::One => {} // This is where the rest should be $0A::Two => {} } } "#, ); } #[test] fn fill_match_arms_preserves_comments_empty() { check_assist( fill_match_arms, r#" enum A { One, Two } fn foo(a: A) { match a { // foo bar baz<|> } } "#, r#" enum A { One, Two } fn foo(a: A) { match a { // foo bar baz $0A::One => {} A::Two => {} } } "#, ); } #[test] fn fill_match_arms_placeholder() { check_assist( fill_match_arms, r#" enum A { One, Two, } fn foo(a: A) { match a<|> { _ => (), } } "#, r#" enum A { One, Two, } fn foo(a: A) { match a { $0A::One => {} A::Two => {} } } "#, ); } #[test] fn option_order() { mark::check!(option_order); let before = r#" fn foo(opt: Option) { match opt<|> { } } "#; let before = &format!("//- /main.rs crate:main deps:core{}{}", before, FamousDefs::FIXTURE); check_assist( fill_match_arms, before, r#" fn foo(opt: Option) { match opt { Some(${0:_}) => {} None => {} } } "#, ); } }