//! This module handles auto-magic editing actions applied together with users //! edits. For example, if the user typed //! //! ```text //! foo //! .bar() //! .baz() //! | // <- cursor is here //! ``` //! //! and types `.` next, we want to indent the dot. //! //! Language server executes such typing assists synchronously. That is, they //! block user's typing and should be pretty fast for this reason! mod on_enter; use ide_db::{base_db::SourceDatabase, FilePosition, RootDatabase}; use span::EditionedFileId; use syntax::{ algo::{ancestors_at_offset, find_node_at_offset}, ast::{self, edit::IndentLevel, AstToken}, AstNode, Parse, SourceFile, SyntaxKind, TextRange, TextSize, T, }; use text_edit::{Indel, TextEdit}; use crate::SourceChange; pub(crate) use on_enter::on_enter; // Don't forget to add new trigger characters to `server_capabilities` in `caps.rs`. pub(crate) const TRIGGER_CHARS: &str = ".=<>{("; struct ExtendedTextEdit { edit: TextEdit, is_snippet: bool, } // Feature: On Typing Assists // // Some features trigger on typing certain characters: // // - typing `let =` tries to smartly add `;` if `=` is followed by an existing expression // - typing `=` between two expressions adds `;` when in statement position // - typing `=` to turn an assignment into an equality comparison removes `;` when in expression position // - typing `.` in a chain method call auto-indents // - typing `{` or `(` in front of an expression inserts a closing `}` or `)` after the expression // - typing `{` in a use item adds a closing `}` in the right place // // VS Code:: // // Add the following to `settings.json`: // [source,json] // ---- // "editor.formatOnType": true, // ---- // // image::https://user-images.githubusercontent.com/48062697/113166163-69758500-923a-11eb-81ee-eb33ec380399.gif[] // image::https://user-images.githubusercontent.com/48062697/113171066-105c2000-923f-11eb-87ab-f4a263346567.gif[] pub(crate) fn on_char_typed( db: &RootDatabase, position: FilePosition, char_typed: char, ) -> Option { if !stdx::always!(TRIGGER_CHARS.contains(char_typed)) { return None; } let file = &db.parse(EditionedFileId::current_edition(position.file_id)); if !stdx::always!(file.tree().syntax().text().char_at(position.offset) == Some(char_typed)) { return None; } let edit = on_char_typed_inner(file, position.offset, char_typed)?; let mut sc = SourceChange::from_text_edit(position.file_id, edit.edit); sc.is_snippet = edit.is_snippet; Some(sc) } fn on_char_typed_inner( file: &Parse, offset: TextSize, char_typed: char, ) -> Option { if !stdx::always!(TRIGGER_CHARS.contains(char_typed)) { return None; } let conv = |text_edit: Option| { Some(ExtendedTextEdit { edit: text_edit?, is_snippet: false }) }; match char_typed { '.' => conv(on_dot_typed(&file.tree(), offset)), '=' => conv(on_eq_typed(&file.tree(), offset)), '<' => on_left_angle_typed(&file.tree(), offset), '>' => conv(on_right_angle_typed(&file.tree(), offset)), '{' => conv(on_opening_bracket_typed(file, offset, '{')), '(' => conv(on_opening_bracket_typed(file, offset, '(')), _ => None, } } /// Inserts a closing bracket when the user types an opening bracket, wrapping an existing expression in a /// block, or a part of a `use` item (for `{`). fn on_opening_bracket_typed( file: &Parse, offset: TextSize, opening_bracket: char, ) -> Option { let (closing_bracket, expected_ast_bracket) = match opening_bracket { '{' => ('}', SyntaxKind::L_CURLY), '(' => (')', SyntaxKind::L_PAREN), _ => return None, }; if !stdx::always!(file.tree().syntax().text().char_at(offset) == Some(opening_bracket)) { return None; } let brace_token = file.tree().syntax().token_at_offset(offset).right_biased()?; if brace_token.kind() != expected_ast_bracket { return None; } // Remove the opening bracket to get a better parse tree, and reparse. let range = brace_token.text_range(); if !stdx::always!(range.len() == TextSize::of(opening_bracket)) { return None; } // FIXME: Edition let file = file.reparse(&Indel::delete(range), span::Edition::CURRENT_FIXME); if let Some(edit) = bracket_expr(&file.tree(), offset, opening_bracket, closing_bracket) { return Some(edit); } if closing_bracket == '}' { if let Some(edit) = brace_use_path(&file.tree(), offset) { return Some(edit); } } return None; fn brace_use_path(file: &SourceFile, offset: TextSize) -> Option { let segment: ast::PathSegment = find_node_at_offset(file.syntax(), offset)?; if segment.syntax().text_range().start() != offset { return None; } let tree: ast::UseTree = find_node_at_offset(file.syntax(), offset)?; Some(TextEdit::insert(tree.syntax().text_range().end() + TextSize::of("{"), "}".to_owned())) } fn bracket_expr( file: &SourceFile, offset: TextSize, opening_bracket: char, closing_bracket: char, ) -> Option { let mut expr: ast::Expr = find_node_at_offset(file.syntax(), offset)?; if expr.syntax().text_range().start() != offset { return None; } // Enclose the outermost expression starting at `offset` while let Some(parent) = expr.syntax().parent() { if parent.text_range().start() != expr.syntax().text_range().start() { break; } match ast::Expr::cast(parent) { Some(parent) => expr = parent, None => break, } } if let Some(parent) = expr.syntax().parent().and_then(ast::Expr::cast) { let mut node = expr.syntax().clone(); let all_prev_sib_attr = loop { match node.prev_sibling() { Some(sib) if sib.kind().is_trivia() || sib.kind() == SyntaxKind::ATTR => { node = sib } Some(_) => break false, None => break true, }; }; if all_prev_sib_attr { expr = parent; } } // Insert the closing bracket right after the expression. Some(TextEdit::insert( expr.syntax().text_range().end() + TextSize::of(opening_bracket), closing_bracket.to_string(), )) } } /// Returns an edit which should be applied after `=` was typed. Primarily, /// this works when adding `let =`. // FIXME: use a snippet completion instead of this hack here. fn on_eq_typed(file: &SourceFile, offset: TextSize) -> Option { if !stdx::always!(file.syntax().text().char_at(offset) == Some('=')) { return None; } if let Some(edit) = let_stmt(file, offset) { return Some(edit); } if let Some(edit) = assign_expr(file, offset) { return Some(edit); } if let Some(edit) = assign_to_eq(file, offset) { return Some(edit); } return None; fn assign_expr(file: &SourceFile, offset: TextSize) -> Option { let binop: ast::BinExpr = find_node_at_offset(file.syntax(), offset)?; if !matches!(binop.op_kind(), Some(ast::BinaryOp::Assignment { op: None })) { return None; } // Parent must be `ExprStmt` or `StmtList` for `;` to be valid. if let Some(expr_stmt) = ast::ExprStmt::cast(binop.syntax().parent()?) { if expr_stmt.semicolon_token().is_some() { return None; } } else if !ast::StmtList::can_cast(binop.syntax().parent()?.kind()) { return None; } let expr = binop.rhs()?; let expr_range = expr.syntax().text_range(); if expr_range.contains(offset) && offset != expr_range.start() { return None; } if file.syntax().text().slice(offset..expr_range.start()).contains_char('\n') { return None; } let offset = expr.syntax().text_range().end(); Some(TextEdit::insert(offset, ";".to_owned())) } /// `a =$0 b;` removes the semicolon if an expression is valid in this context. fn assign_to_eq(file: &SourceFile, offset: TextSize) -> Option { let binop: ast::BinExpr = find_node_at_offset(file.syntax(), offset)?; if !matches!(binop.op_kind(), Some(ast::BinaryOp::CmpOp(ast::CmpOp::Eq { negated: false }))) { return None; } let expr_stmt = ast::ExprStmt::cast(binop.syntax().parent()?)?; let semi = expr_stmt.semicolon_token()?; if expr_stmt.syntax().next_sibling().is_some() { // Not the last statement in the list. return None; } Some(TextEdit::delete(semi.text_range())) } fn let_stmt(file: &SourceFile, offset: TextSize) -> Option { let let_stmt: ast::LetStmt = find_node_at_offset(file.syntax(), offset)?; if let_stmt.semicolon_token().is_some() { return None; } let expr = let_stmt.initializer()?; let expr_range = expr.syntax().text_range(); if expr_range.contains(offset) && offset != expr_range.start() { return None; } if file.syntax().text().slice(offset..expr_range.start()).contains_char('\n') { return None; } // Good indicator that we will insert into a bad spot, so bail out. if expr.syntax().descendants().any(|it| it.kind() == SyntaxKind::ERROR) { return None; } let offset = let_stmt.syntax().text_range().end(); Some(TextEdit::insert(offset, ";".to_owned())) } } /// Returns an edit which should be applied when a dot ('.') is typed on a blank line, indenting the line appropriately. fn on_dot_typed(file: &SourceFile, offset: TextSize) -> Option { if !stdx::always!(file.syntax().text().char_at(offset) == Some('.')) { return None; } let whitespace = file.syntax().token_at_offset(offset).left_biased().and_then(ast::Whitespace::cast)?; // if prior is fn call over multiple lines dont indent // or if previous is method call over multiples lines keep that indent let current_indent = { let text = whitespace.text(); let (_prefix, suffix) = text.rsplit_once('\n')?; suffix }; let current_indent_len = TextSize::of(current_indent); let parent = whitespace.syntax().parent()?; // Make sure dot is a part of call chain let receiver = if let Some(field_expr) = ast::FieldExpr::cast(parent.clone()) { field_expr.expr()? } else if let Some(method_call_expr) = ast::MethodCallExpr::cast(parent.clone()) { method_call_expr.receiver()? } else { return None; }; let receiver_is_multiline = receiver.syntax().text().find_char('\n').is_some(); let target_indent = match (receiver, receiver_is_multiline) { // if receiver is multiline field or method call, just take the previous `.` indentation (ast::Expr::MethodCallExpr(expr), true) => { expr.dot_token().as_ref().map(IndentLevel::from_token) } (ast::Expr::FieldExpr(expr), true) => { expr.dot_token().as_ref().map(IndentLevel::from_token) } // if receiver is multiline expression, just keeps its indentation (_, true) => Some(IndentLevel::from_node(&parent)), _ => None, }; let target_indent = match target_indent { Some(x) => x, // in all other cases, take previous indentation and indent once None => IndentLevel::from_node(&parent) + 1, } .to_string(); if current_indent_len == TextSize::of(&target_indent) { return None; } Some(TextEdit::replace(TextRange::new(offset - current_indent_len, offset), target_indent)) } /// Add closing `>` for generic arguments/parameters. fn on_left_angle_typed(file: &SourceFile, offset: TextSize) -> Option { let file_text = file.syntax().text(); if !stdx::always!(file_text.char_at(offset) == Some('<')) { return None; } // Find the next non-whitespace char in the line. let mut next_offset = offset + TextSize::of('<'); while file_text.char_at(next_offset) == Some(' ') { next_offset += TextSize::of(' ') } if file_text.char_at(next_offset) == Some('>') { return None; } let range = TextRange::at(offset, TextSize::of('<')); if let Some(t) = file.syntax().token_at_offset(offset).left_biased() { if T![impl] == t.kind() { return Some(ExtendedTextEdit { edit: TextEdit::replace(range, "<$0>".to_owned()), is_snippet: true, }); } } if ancestors_at_offset(file.syntax(), offset).any(|n| { ast::GenericParamList::can_cast(n.kind()) || ast::GenericArgList::can_cast(n.kind()) }) { Some(ExtendedTextEdit { edit: TextEdit::replace(range, "<$0>".to_owned()), is_snippet: true, }) } else { None } } /// Adds a space after an arrow when `fn foo() { ... }` is turned into `fn foo() -> { ... }` fn on_right_angle_typed(file: &SourceFile, offset: TextSize) -> Option { let file_text = file.syntax().text(); if !stdx::always!(file_text.char_at(offset) == Some('>')) { return None; } let after_arrow = offset + TextSize::of('>'); if file_text.char_at(after_arrow) != Some('{') { return None; } find_node_at_offset::(file.syntax(), offset)?; Some(TextEdit::insert(after_arrow, " ".to_owned())) } #[cfg(test)] mod tests { use test_utils::{assert_eq_text, extract_offset}; use super::*; impl ExtendedTextEdit { fn apply(&self, text: &mut String) { self.edit.apply(text); } } fn do_type_char(char_typed: char, before: &str) -> Option { let (offset, mut before) = extract_offset(before); let edit = TextEdit::insert(offset, char_typed.to_string()); edit.apply(&mut before); let parse = SourceFile::parse(&before, span::Edition::CURRENT_FIXME); on_char_typed_inner(&parse, offset, char_typed).map(|it| { it.apply(&mut before); before.to_string() }) } fn type_char(char_typed: char, ra_fixture_before: &str, ra_fixture_after: &str) { let actual = do_type_char(char_typed, ra_fixture_before) .unwrap_or_else(|| panic!("typing `{char_typed}` did nothing")); assert_eq_text!(ra_fixture_after, &actual); } fn type_char_noop(char_typed: char, ra_fixture_before: &str) { let file_change = do_type_char(char_typed, ra_fixture_before); assert!(file_change.is_none()) } #[test] fn test_semi_after_let() { type_char_noop( '=', r" fn foo() { let foo =$0 } ", ); type_char( '=', r#" fn foo() { let foo $0 1 + 1 } "#, r#" fn foo() { let foo = 1 + 1; } "#, ); type_char_noop( '=', r#" fn foo() { let difference $0(counts: &HashMap<(char, char), u64>, last: char) -> u64 { // ... } } "#, ); type_char_noop( '=', r" fn foo() { let foo =$0 let bar = 1; } ", ); } #[test] fn test_semi_after_assign() { type_char( '=', r#" fn f() { i $0 0 } "#, r#" fn f() { i = 0; } "#, ); type_char( '=', r#" fn f() { i $0 0 i } "#, r#" fn f() { i = 0; i } "#, ); type_char_noop( '=', r#" fn f(x: u8) { if x $0 } "#, ); type_char_noop( '=', r#" fn f(x: u8) { if x $0 {} } "#, ); type_char_noop( '=', r#" fn f(x: u8) { if x $0 0 {} } "#, ); type_char_noop( '=', r#" fn f() { g(i $0 0); } "#, ); } #[test] fn assign_to_eq() { type_char( '=', r#" fn f(a: u8) { a =$0 0; } "#, r#" fn f(a: u8) { a == 0 } "#, ); type_char( '=', r#" fn f(a: u8) { a $0= 0; } "#, r#" fn f(a: u8) { a == 0 } "#, ); type_char_noop( '=', r#" fn f(a: u8) { let e = a =$0 0; } "#, ); type_char_noop( '=', r#" fn f(a: u8) { let e = a =$0 0; e } "#, ); } #[test] fn indents_new_chain_call() { type_char( '.', r#" fn main() { xs.foo() $0 } "#, r#" fn main() { xs.foo() . } "#, ); type_char_noop( '.', r#" fn main() { xs.foo() $0 } "#, ) } #[test] fn indents_new_chain_call_with_semi() { type_char( '.', r" fn main() { xs.foo() $0; } ", r#" fn main() { xs.foo() .; } "#, ); type_char_noop( '.', r#" fn main() { xs.foo() $0; } "#, ) } #[test] fn indents_new_chain_call_with_let() { type_char( '.', r#" fn main() { let _ = foo $0 bar() } "#, r#" fn main() { let _ = foo . bar() } "#, ); } #[test] fn indents_continued_chain_call() { type_char( '.', r#" fn main() { xs.foo() .first() $0 } "#, r#" fn main() { xs.foo() .first() . } "#, ); type_char_noop( '.', r#" fn main() { xs.foo() .first() $0 } "#, ); } #[test] fn indents_middle_of_chain_call() { type_char( '.', r#" fn source_impl() { let var = enum_defvariant_list().unwrap() $0 .nth(92) .unwrap(); } "#, r#" fn source_impl() { let var = enum_defvariant_list().unwrap() . .nth(92) .unwrap(); } "#, ); type_char_noop( '.', r#" fn source_impl() { let var = enum_defvariant_list().unwrap() $0 .nth(92) .unwrap(); } "#, ); } #[test] fn dont_indent_freestanding_dot() { type_char_noop( '.', r#" fn main() { $0 } "#, ); type_char_noop( '.', r#" fn main() { $0 } "#, ); } #[test] fn adds_space_after_return_type() { type_char( '>', r#" fn foo() -$0{ 92 } "#, r#" fn foo() -> { 92 } "#, ); } #[test] fn adds_closing_brace_for_expr() { type_char( '{', r#" fn f() { match () { _ => $0() } } "#, r#" fn f() { match () { _ => {()} } } "#, ); type_char( '{', r#" fn f() { $0() } "#, r#" fn f() { {()} } "#, ); type_char( '{', r#" fn f() { let x = $0(); } "#, r#" fn f() { let x = {()}; } "#, ); type_char( '{', r#" fn f() { let x = $0a.b(); } "#, r#" fn f() { let x = {a.b()}; } "#, ); type_char( '{', r#" const S: () = $0(); fn f() {} "#, r#" const S: () = {()}; fn f() {} "#, ); type_char( '{', r#" const S: () = $0a.b(); fn f() {} "#, r#" const S: () = {a.b()}; fn f() {} "#, ); type_char( '{', r#" fn f() { match x { 0 => $0(), 1 => (), } } "#, r#" fn f() { match x { 0 => {()}, 1 => (), } } "#, ); type_char( '{', r#" fn main() { #[allow(unreachable_code)] $0g(); } "#, r#" fn main() { #[allow(unreachable_code)] {g()}; } "#, ); } #[test] fn noop_in_string_literal() { // Regression test for #9351 type_char_noop( '{', r##" fn check_with(ra_fixture: &str, expect: Expect) { let base = r#" enum E { T(), R$0, C } use self::E::X; const Z: E = E::C; mod m {} asdasdasdasdasdasda sdasdasdasdasdasda sdasdasdasdasd "#; let actual = completion_list(&format!("{}\n{}", base, ra_fixture)); expect.assert_eq(&actual) } "##, ); } #[test] fn noop_in_item_position_with_macro() { type_char_noop('{', r#"$0println!();"#); type_char_noop( '{', r#" fn main() $0println!("hello"); }"#, ); } #[test] fn adds_closing_brace_for_use_tree() { type_char( '{', r#" use some::$0Path; "#, r#" use some::{Path}; "#, ); type_char( '{', r#" use some::{Path, $0Other}; "#, r#" use some::{Path, {Other}}; "#, ); type_char( '{', r#" use some::{$0Path, Other}; "#, r#" use some::{{Path}, Other}; "#, ); type_char( '{', r#" use some::path::$0to::Item; "#, r#" use some::path::{to::Item}; "#, ); type_char( '{', r#" use some::$0path::to::Item; "#, r#" use some::{path::to::Item}; "#, ); type_char( '{', r#" use $0some::path::to::Item; "#, r#" use {some::path::to::Item}; "#, ); type_char( '{', r#" use some::path::$0to::{Item}; "#, r#" use some::path::{to::{Item}}; "#, ); type_char( '{', r#" use $0Thing as _; "#, r#" use {Thing as _}; "#, ); type_char_noop( '{', r#" use some::pa$0th::to::Item; "#, ); } #[test] fn adds_closing_parenthesis_for_expr() { type_char( '(', r#" fn f() { match () { _ => $0() } } "#, r#" fn f() { match () { _ => (()) } } "#, ); type_char( '(', r#" fn f() { $0() } "#, r#" fn f() { (()) } "#, ); type_char( '(', r#" fn f() { let x = $0(); } "#, r#" fn f() { let x = (()); } "#, ); type_char( '(', r#" fn f() { let x = $0a.b(); } "#, r#" fn f() { let x = (a.b()); } "#, ); type_char( '(', r#" const S: () = $0(); fn f() {} "#, r#" const S: () = (()); fn f() {} "#, ); type_char( '(', r#" const S: () = $0a.b(); fn f() {} "#, r#" const S: () = (a.b()); fn f() {} "#, ); type_char( '(', r#" fn f() { match x { 0 => $0(), 1 => (), } } "#, r#" fn f() { match x { 0 => (()), 1 => (), } } "#, ); type_char( '(', r#" fn f() { let z = Some($03); } "#, r#" fn f() { let z = Some((3)); } "#, ); } #[test] fn parenthesis_noop_in_string_literal() { // Regression test for #9351 type_char_noop( '(', r##" fn check_with(ra_fixture: &str, expect: Expect) { let base = r#" enum E { T(), R$0, C } use self::E::X; const Z: E = E::C; mod m {} asdasdasdasdasdasda sdasdasdasdasdasda sdasdasdasdasd "#; let actual = completion_list(&format!("{}\n{}", base, ra_fixture)); expect.assert_eq(&actual) } "##, ); } #[test] fn parenthesis_noop_in_item_position_with_macro() { type_char_noop('(', r#"$0println!();"#); type_char_noop( '(', r#" fn main() $0println!("hello"); }"#, ); } #[test] fn parenthesis_noop_in_use_tree() { type_char_noop( '(', r#" use some::$0Path; "#, ); type_char_noop( '(', r#" use some::{Path, $0Other}; "#, ); type_char_noop( '(', r#" use some::{$0Path, Other}; "#, ); type_char_noop( '(', r#" use some::path::$0to::Item; "#, ); type_char_noop( '(', r#" use some::$0path::to::Item; "#, ); type_char_noop( '(', r#" use $0some::path::to::Item; "#, ); type_char_noop( '(', r#" use some::path::$0to::{Item}; "#, ); type_char_noop( '(', r#" use $0Thing as _; "#, ); type_char_noop( '(', r#" use some::pa$0th::to::Item; "#, ); } #[test] fn adds_closing_angle_bracket_for_generic_args() { type_char( '<', r#" fn foo() { bar::$0 } "#, r#" fn foo() { bar::<$0> } "#, ); type_char( '<', r#" fn foo(bar: &[u64]) { bar.iter().collect::$0(); } "#, r#" fn foo(bar: &[u64]) { bar.iter().collect::<$0>(); } "#, ); } #[test] fn adds_closing_angle_bracket_for_generic_params() { type_char( '<', r#" fn foo$0() {} "#, r#" fn foo<$0>() {} "#, ); type_char( '<', r#" fn foo$0 "#, r#" fn foo<$0> "#, ); type_char( '<', r#" struct Foo$0 {} "#, r#" struct Foo<$0> {} "#, ); type_char( '<', r#" struct Foo$0(); "#, r#" struct Foo<$0>(); "#, ); type_char( '<', r#" struct Foo$0 "#, r#" struct Foo<$0> "#, ); type_char( '<', r#" enum Foo$0 "#, r#" enum Foo<$0> "#, ); type_char( '<', r#" trait Foo$0 "#, r#" trait Foo<$0> "#, ); type_char( '<', r#" type Foo$0 = Bar; "#, r#" type Foo<$0> = Bar; "#, ); type_char( '<', r#" impl$0 Foo {} "#, r#" impl<$0> Foo {} "#, ); type_char( '<', r#" impl Foo$0 {} "#, r#" impl Foo<$0> {} "#, ); type_char( '<', r#" impl Foo$0 {} "#, r#" impl Foo<$0> {} "#, ); } #[test] fn dont_add_closing_angle_bracket_for_comparison() { type_char_noop( '<', r#" fn main() { 42$0 } "#, ); type_char_noop( '<', r#" fn main() { 42 $0 } "#, ); type_char_noop( '<', r#" fn main() { let foo = 42; foo $0 } "#, ); } #[test] fn dont_add_closing_angle_bracket_if_it_is_already_there() { type_char_noop( '<', r#" fn foo() { bar::$0> } "#, ); type_char_noop( '<', r#" fn foo(bar: &[u64]) { bar.iter().collect::$0 >(); } "#, ); type_char_noop( '<', r#" fn foo$0>() {} "#, ); type_char_noop( '<', r#" fn foo$0> "#, ); type_char_noop( '<', r#" struct Foo$0> {} "#, ); type_char_noop( '<', r#" struct Foo$0>(); "#, ); type_char_noop( '<', r#" struct Foo$0> "#, ); type_char_noop( '<', r#" enum Foo$0> "#, ); type_char_noop( '<', r#" trait Foo$0> "#, ); type_char_noop( '<', r#" type Foo$0> = Bar; "#, ); type_char_noop( '<', r#" impl$0> Foo {} "#, ); type_char_noop( '<', r#" impl Foo$0> {} "#, ); type_char_noop( '<', r#" impl Foo$0> {} "#, ); } #[test] fn regression_629() { type_char_noop( '.', r#" fn foo() { CompletionItem::new( CompletionKind::Reference, ctx.source_range(), field.name().to_string(), ) .foo() $0 } "#, ); type_char_noop( '.', r#" fn foo() { CompletionItem::new( CompletionKind::Reference, ctx.source_range(), field.name().to_string(), ) $0 } "#, ); } }