//! Path expression resolution. use chalk_ir::cast::Cast; use hir_def::{ path::{Path, PathSegment}, resolver::{ResolveValueResult, TypeNs, ValueNs}, AdtId, AssocItemId, GenericDefId, ItemContainerId, Lookup, }; use hir_expand::name::Name; use stdx::never; use crate::{ builder::ParamKind, consteval, method_resolution::{self, VisibleFromModule}, to_chalk_trait_id, utils::generics, InferenceDiagnostic, Interner, Substitution, TraitRefExt, Ty, TyBuilder, TyExt, TyKind, ValueTyDefId, }; use super::{ExprOrPatId, InferenceContext, TraitRef}; impl InferenceContext<'_> { pub(super) fn infer_path(&mut self, path: &Path, id: ExprOrPatId) -> Option { let (value_def, generic_def, substs) = match self.resolve_value_path(path, id)? { ValuePathResolution::GenericDef(value_def, generic_def, substs) => { (value_def, generic_def, substs) } ValuePathResolution::NonGeneric(ty) => return Some(ty), }; let substs = self.insert_type_vars(substs); let substs = self.normalize_associated_types_in(substs); self.add_required_obligations_for_value_path(generic_def, &substs); let ty = self.db.value_ty(value_def)?.substitute(Interner, &substs); let ty = self.normalize_associated_types_in(ty); Some(ty) } fn resolve_value_path(&mut self, path: &Path, id: ExprOrPatId) -> Option { let (value, self_subst) = self.resolve_value_path_inner(path, id)?; let value_def = match value { ValueNs::LocalBinding(pat) => match self.result.type_of_binding.get(pat) { Some(ty) => return Some(ValuePathResolution::NonGeneric(ty.clone())), None => { never!("uninferred pattern?"); return None; } }, ValueNs::FunctionId(it) => it.into(), ValueNs::ConstId(it) => it.into(), ValueNs::StaticId(it) => it.into(), ValueNs::StructId(it) => { self.write_variant_resolution(id, it.into()); it.into() } ValueNs::EnumVariantId(it) => { self.write_variant_resolution(id, it.into()); it.into() } ValueNs::ImplSelf(impl_id) => { let generics = crate::utils::generics(self.db.upcast(), impl_id.into()); let substs = generics.placeholder_subst(self.db); let ty = self.db.impl_self_ty(impl_id).substitute(Interner, &substs); if let Some((AdtId::StructId(struct_id), substs)) = ty.as_adt() { return Some(ValuePathResolution::GenericDef( struct_id.into(), struct_id.into(), substs.clone(), )); } else { // FIXME: report error, invalid Self reference return None; } } ValueNs::GenericParam(it) => { return Some(ValuePathResolution::NonGeneric(self.db.const_param_ty(it))) } }; let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into()); let substs = ctx.substs_from_path(path, value_def, true); let substs = substs.as_slice(Interner); let parent_substs = self_subst.or_else(|| { let generics = generics(self.db.upcast(), value_def.to_generic_def_id()?); let parent_params_len = generics.parent_generics()?.len(); let parent_args = &substs[substs.len() - parent_params_len..]; Some(Substitution::from_iter(Interner, parent_args)) }); let parent_substs_len = parent_substs.as_ref().map_or(0, |s| s.len(Interner)); let mut it = substs.iter().take(substs.len() - parent_substs_len).cloned(); let Some(generic_def) = value_def.to_generic_def_id() else { // `value_def` is the kind of item that can never be generic (i.e. statics, at least // currently). We can just skip the binders to get its type. let (ty, binders) = self.db.value_ty(value_def)?.into_value_and_skipped_binders(); stdx::always!( parent_substs.is_none() && binders.is_empty(Interner), "non-empty binders for non-generic def", ); return Some(ValuePathResolution::NonGeneric(ty)); }; let builder = TyBuilder::subst_for_def(self.db, generic_def, parent_substs); let substs = builder .fill(|x| { it.next().unwrap_or_else(|| match x { ParamKind::Type => self.result.standard_types.unknown.clone().cast(Interner), ParamKind::Const(ty) => consteval::unknown_const_as_generic(ty.clone()), }) }) .build(); Some(ValuePathResolution::GenericDef(value_def, generic_def, substs)) } pub(super) fn resolve_value_path_inner( &mut self, path: &Path, id: ExprOrPatId, ) -> Option<(ValueNs, Option>)> { let (value, self_subst) = if let Some(type_ref) = path.type_anchor() { let last = path.segments().last()?; // Don't use `self.make_ty()` here as we need `orig_ns`. let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into()); let (ty, orig_ns) = ctx.lower_ty_ext(type_ref); let ty = self.table.insert_type_vars(ty); let ty = self.table.normalize_associated_types_in(ty); let remaining_segments_for_ty = path.segments().take(path.segments().len() - 1); let (ty, _) = ctx.lower_ty_relative_path(ty, orig_ns, remaining_segments_for_ty); let ty = self.table.insert_type_vars(ty); let ty = self.table.normalize_associated_types_in(ty); self.resolve_ty_assoc_item(ty, last.name, id).map(|(it, substs)| (it, Some(substs)))? } else { // FIXME: report error, unresolved first path segment let value_or_partial = self.resolver.resolve_path_in_value_ns(self.db.upcast(), path)?; match value_or_partial { ResolveValueResult::ValueNs(it, _) => (it, None), ResolveValueResult::Partial(def, remaining_index, _) => self .resolve_assoc_item(def, path, remaining_index, id) .map(|(it, substs)| (it, Some(substs)))?, } }; Some((value, self_subst)) } fn add_required_obligations_for_value_path(&mut self, def: GenericDefId, subst: &Substitution) { let predicates = self.db.generic_predicates(def); for predicate in predicates.iter() { let (predicate, binders) = predicate.clone().substitute(Interner, &subst).into_value_and_skipped_binders(); // Quantified where clauses are not yet handled. stdx::always!(binders.is_empty(Interner)); self.push_obligation(predicate.cast(Interner)); } // We need to add `Self: Trait` obligation when `def` is a trait assoc item. let container = match def { GenericDefId::FunctionId(id) => id.lookup(self.db.upcast()).container, GenericDefId::ConstId(id) => id.lookup(self.db.upcast()).container, _ => return, }; if let ItemContainerId::TraitId(trait_) = container { let param_len = generics(self.db.upcast(), def).len_self(); let parent_subst = Substitution::from_iter(Interner, subst.iter(Interner).skip(param_len)); let trait_ref = TraitRef { trait_id: to_chalk_trait_id(trait_), substitution: parent_subst }; self.push_obligation(trait_ref.cast(Interner)); } } fn resolve_assoc_item( &mut self, def: TypeNs, path: &Path, remaining_index: usize, id: ExprOrPatId, ) -> Option<(ValueNs, Substitution)> { // there may be more intermediate segments between the resolved one and // the end. Only the last segment needs to be resolved to a value; from // the segments before that, we need to get either a type or a trait ref. let _d; let (resolved_segment, remaining_segments) = match path { Path::Normal { .. } => { assert!(remaining_index < path.segments().len()); ( path.segments().get(remaining_index - 1).unwrap(), path.segments().skip(remaining_index), ) } Path::LangItem(..) => ( PathSegment { name: { _d = hir_expand::name::known::Unknown; &_d }, args_and_bindings: None, }, path.segments(), ), }; let is_before_last = remaining_segments.len() == 1; match (def, is_before_last) { (TypeNs::TraitId(trait_), true) => { let segment = remaining_segments.last().expect("there should be at least one segment here"); let ctx = crate::lower::TyLoweringContext::new( self.db, &self.resolver, self.owner.into(), ); let trait_ref = ctx.lower_trait_ref_from_resolved_path(trait_, resolved_segment, None); self.resolve_trait_assoc_item(trait_ref, segment, id) } (def, _) => { // Either we already have a type (e.g. `Vec::new`), or we have a // trait but it's not the last segment, so the next segment // should resolve to an associated type of that trait (e.g. `::Item::default`) let remaining_segments_for_ty = remaining_segments.take(remaining_segments.len() - 1); let ctx = crate::lower::TyLoweringContext::new( self.db, &self.resolver, self.owner.into(), ); let (ty, _) = ctx.lower_partly_resolved_path( def, resolved_segment, remaining_segments_for_ty, true, ); if ty.is_unknown() { return None; } let ty = self.insert_type_vars(ty); let ty = self.normalize_associated_types_in(ty); let segment = remaining_segments.last().expect("there should be at least one segment here"); self.resolve_ty_assoc_item(ty, segment.name, id) } } } fn resolve_trait_assoc_item( &mut self, trait_ref: TraitRef, segment: PathSegment<'_>, id: ExprOrPatId, ) -> Option<(ValueNs, Substitution)> { let trait_ = trait_ref.hir_trait_id(); let item = self.db.trait_data(trait_).items.iter().map(|(_name, id)| *id).find_map(|item| { match item { AssocItemId::FunctionId(func) => { if segment.name == &self.db.function_data(func).name { Some(AssocItemId::FunctionId(func)) } else { None } } AssocItemId::ConstId(konst) => { if self .db .const_data(konst) .name .as_ref() .map_or(false, |n| n == segment.name) { Some(AssocItemId::ConstId(konst)) } else { None } } AssocItemId::TypeAliasId(_) => None, } })?; let def = match item { AssocItemId::FunctionId(f) => ValueNs::FunctionId(f), AssocItemId::ConstId(c) => ValueNs::ConstId(c), AssocItemId::TypeAliasId(_) => unreachable!(), }; self.write_assoc_resolution(id, item, trait_ref.substitution.clone()); Some((def, trait_ref.substitution)) } fn resolve_ty_assoc_item( &mut self, ty: Ty, name: &Name, id: ExprOrPatId, ) -> Option<(ValueNs, Substitution)> { if let TyKind::Error = ty.kind(Interner) { return None; } if let Some(result) = self.resolve_enum_variant_on_ty(&ty, name, id) { return Some(result); } let canonical_ty = self.canonicalize(ty.clone()); let mut not_visible = None; let res = method_resolution::iterate_method_candidates( &canonical_ty.value, self.db, self.table.trait_env.clone(), self.get_traits_in_scope().as_ref().left_or_else(|&it| it), VisibleFromModule::Filter(self.resolver.module()), Some(name), method_resolution::LookupMode::Path, |_ty, item, visible| { if visible { Some((item, true)) } else { if not_visible.is_none() { not_visible = Some((item, false)); } None } }, ); let res = res.or(not_visible); if res.is_none() { self.push_diagnostic(InferenceDiagnostic::UnresolvedAssocItem { id }); } let (item, visible) = res?; let (def, container) = match item { AssocItemId::FunctionId(f) => { (ValueNs::FunctionId(f), f.lookup(self.db.upcast()).container) } AssocItemId::ConstId(c) => (ValueNs::ConstId(c), c.lookup(self.db.upcast()).container), AssocItemId::TypeAliasId(_) => unreachable!(), }; let substs = match container { ItemContainerId::ImplId(impl_id) => { let impl_substs = TyBuilder::subst_for_def(self.db, impl_id, None) .fill_with_inference_vars(&mut self.table) .build(); let impl_self_ty = self.db.impl_self_ty(impl_id).substitute(Interner, &impl_substs); self.unify(&impl_self_ty, &ty); impl_substs } ItemContainerId::TraitId(trait_) => { // we're picking this method let trait_ref = TyBuilder::trait_ref(self.db, trait_) .push(ty.clone()) .fill_with_inference_vars(&mut self.table) .build(); self.push_obligation(trait_ref.clone().cast(Interner)); trait_ref.substitution } ItemContainerId::ModuleId(_) | ItemContainerId::ExternBlockId(_) => { never!("assoc item contained in module/extern block"); return None; } }; self.write_assoc_resolution(id, item, substs.clone()); if !visible { self.push_diagnostic(InferenceDiagnostic::PrivateAssocItem { id, item }); } Some((def, substs)) } fn resolve_enum_variant_on_ty( &mut self, ty: &Ty, name: &Name, id: ExprOrPatId, ) -> Option<(ValueNs, Substitution)> { let ty = self.resolve_ty_shallow(ty); let (enum_id, subst) = match ty.as_adt() { Some((AdtId::EnumId(e), subst)) => (e, subst), _ => return None, }; let enum_data = self.db.enum_data(enum_id); let variant = enum_data.variant(name)?; self.write_variant_resolution(id, variant.into()); Some((ValueNs::EnumVariantId(variant), subst.clone())) } } #[derive(Debug)] enum ValuePathResolution { // It's awkward to wrap a single ID in two enums, but we need both and this saves fallible // conversion between them + `unwrap()`. GenericDef(ValueTyDefId, GenericDefId, Substitution), NonGeneric(Ty), }