//! Various extension methods to ast Expr Nodes, which are hard to code-generate. use crate::{ ast::{self, child_opt, children, AstChildren, AstNode}, SmolStr, SyntaxKind::*, SyntaxToken, T, }; #[derive(Debug, Clone, PartialEq, Eq)] pub enum ElseBranch { Block(ast::Block), IfExpr(ast::IfExpr), } impl ast::IfExpr { pub fn then_branch(&self) -> Option { self.blocks().nth(0) } pub fn else_branch(&self) -> Option { let res = match self.blocks().nth(1) { Some(block) => ElseBranch::Block(block), None => { let elif: ast::IfExpr = child_opt(self)?; ElseBranch::IfExpr(elif) } }; Some(res) } fn blocks(&self) -> AstChildren { children(self) } } impl ast::RefExpr { pub fn is_mut(&self) -> bool { self.syntax().children_with_tokens().any(|n| n.kind() == T![mut]) } } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub enum PrefixOp { /// The `*` operator for dereferencing Deref, /// The `!` operator for logical inversion Not, /// The `-` operator for negation Neg, } impl ast::PrefixExpr { pub fn op_kind(&self) -> Option { match self.op_token()?.kind() { T![*] => Some(PrefixOp::Deref), T![!] => Some(PrefixOp::Not), T![-] => Some(PrefixOp::Neg), _ => None, } } pub fn op_token(&self) -> Option { self.syntax().first_child_or_token()?.into_token() } } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub enum BinOp { /// The `||` operator for boolean OR BooleanOr, /// The `&&` operator for boolean AND BooleanAnd, /// The `==` operator for equality testing EqualityTest, /// The `!=` operator for equality testing NegatedEqualityTest, /// The `<=` operator for lesser-equal testing LesserEqualTest, /// The `>=` operator for greater-equal testing GreaterEqualTest, /// The `<` operator for comparison LesserTest, /// The `>` operator for comparison GreaterTest, /// The `+` operator for addition Addition, /// The `*` operator for multiplication Multiplication, /// The `-` operator for subtraction Subtraction, /// The `/` operator for division Division, /// The `%` operator for remainder after division Remainder, /// The `<<` operator for left shift LeftShift, /// The `>>` operator for right shift RightShift, /// The `^` operator for bitwise XOR BitwiseXor, /// The `|` operator for bitwise OR BitwiseOr, /// The `&` operator for bitwise AND BitwiseAnd, /// The `..` operator for right-open ranges RangeRightOpen, /// The `..=` operator for right-closed ranges RangeRightClosed, /// The `=` operator for assignment Assignment, /// The `+=` operator for assignment after addition AddAssign, /// The `/=` operator for assignment after division DivAssign, /// The `*=` operator for assignment after multiplication MulAssign, /// The `%=` operator for assignment after remainders RemAssign, /// The `>>=` operator for assignment after shifting right ShrAssign, /// The `<<=` operator for assignment after shifting left ShlAssign, /// The `-=` operator for assignment after subtraction SubAssign, /// The `|=` operator for assignment after bitwise OR BitOrAssign, /// The `&=` operator for assignment after bitwise AND BitAndAssign, /// The `^=` operator for assignment after bitwise XOR BitXorAssign, } impl ast::BinExpr { fn op_details(&self) -> Option<(SyntaxToken, BinOp)> { self.syntax().children_with_tokens().filter_map(|it| it.into_token()).find_map(|c| match c .kind() { T![||] => Some((c, BinOp::BooleanOr)), T![&&] => Some((c, BinOp::BooleanAnd)), T![==] => Some((c, BinOp::EqualityTest)), T![!=] => Some((c, BinOp::NegatedEqualityTest)), T![<=] => Some((c, BinOp::LesserEqualTest)), T![>=] => Some((c, BinOp::GreaterEqualTest)), T![<] => Some((c, BinOp::LesserTest)), T![>] => Some((c, BinOp::GreaterTest)), T![+] => Some((c, BinOp::Addition)), T![*] => Some((c, BinOp::Multiplication)), T![-] => Some((c, BinOp::Subtraction)), T![/] => Some((c, BinOp::Division)), T![%] => Some((c, BinOp::Remainder)), T![<<] => Some((c, BinOp::LeftShift)), T![>>] => Some((c, BinOp::RightShift)), T![^] => Some((c, BinOp::BitwiseXor)), T![|] => Some((c, BinOp::BitwiseOr)), T![&] => Some((c, BinOp::BitwiseAnd)), T![..] => Some((c, BinOp::RangeRightOpen)), T![..=] => Some((c, BinOp::RangeRightClosed)), T![=] => Some((c, BinOp::Assignment)), T![+=] => Some((c, BinOp::AddAssign)), T![/=] => Some((c, BinOp::DivAssign)), T![*=] => Some((c, BinOp::MulAssign)), T![%=] => Some((c, BinOp::RemAssign)), T![>>=] => Some((c, BinOp::ShrAssign)), T![<<=] => Some((c, BinOp::ShlAssign)), T![-=] => Some((c, BinOp::SubAssign)), T![|=] => Some((c, BinOp::BitOrAssign)), T![&=] => Some((c, BinOp::BitAndAssign)), T![^=] => Some((c, BinOp::BitXorAssign)), _ => None, }) } pub fn op_kind(&self) -> Option { self.op_details().map(|t| t.1) } pub fn op_token(&self) -> Option { self.op_details().map(|t| t.0) } pub fn lhs(&self) -> Option { children(self).nth(0) } pub fn rhs(&self) -> Option { children(self).nth(1) } pub fn sub_exprs(&self) -> (Option, Option) { let mut children = children(self); let first = children.next(); let second = children.next(); (first, second) } } pub enum ArrayExprKind { Repeat { initializer: Option, repeat: Option }, ElementList(AstChildren), } impl ast::ArrayExpr { pub fn kind(&self) -> ArrayExprKind { if self.is_repeat() { ArrayExprKind::Repeat { initializer: children(self).nth(0), repeat: children(self).nth(1), } } else { ArrayExprKind::ElementList(children(self)) } } fn is_repeat(&self) -> bool { self.syntax().children_with_tokens().any(|it| it.kind() == T![;]) } } #[derive(Clone, Debug, PartialEq, Eq, Hash)] pub enum LiteralKind { String, ByteString, Char, Byte, IntNumber { suffix: Option }, FloatNumber { suffix: Option }, Bool, } impl ast::Literal { pub fn token(&self) -> SyntaxToken { self.syntax() .children_with_tokens() .find(|e| e.kind() != ATTR && !e.kind().is_trivia()) .and_then(|e| e.into_token()) .unwrap() } pub fn kind(&self) -> LiteralKind { match self.token().kind() { INT_NUMBER => { let int_suffix_list = [ "isize", "i128", "i64", "i32", "i16", "i8", "usize", "u128", "u64", "u32", "u16", "u8", ]; // The lexer treats e.g. `1f64` as an integer literal. See // https://github.com/rust-analyzer/rust-analyzer/issues/1592 // and the comments on the linked PR. let float_suffix_list = [ "f32", "f64" ]; let text = self.token().text().to_string(); let float_suffix = float_suffix_list .iter() .find(|&s| text.ends_with(s)) .map(|&suf| SmolStr::new(suf)); if float_suffix.is_some() { LiteralKind::FloatNumber { suffix: float_suffix } } else { let suffix = int_suffix_list .iter() .find(|&s| text.ends_with(s)) .map(|&suf| SmolStr::new(suf)); LiteralKind::IntNumber { suffix } } } FLOAT_NUMBER => { let allowed_suffix_list = ["f64", "f32"]; let text = self.token().text().to_string(); let suffix = allowed_suffix_list .iter() .find(|&s| text.ends_with(s)) .map(|&suf| SmolStr::new(suf)); LiteralKind::FloatNumber { suffix } } STRING | RAW_STRING => LiteralKind::String, T![true] | T![false] => LiteralKind::Bool, BYTE_STRING | RAW_BYTE_STRING => LiteralKind::ByteString, CHAR => LiteralKind::Char, BYTE => LiteralKind::Byte, _ => unreachable!(), } } } #[test] fn test_literal_with_attr() { let parse = ast::SourceFile::parse(r#"const _: &str = { #[attr] "Hello" };"#); let lit = parse.tree().syntax().descendants().find_map(ast::Literal::cast).unwrap(); assert_eq!(lit.token().text(), r#""Hello""#); } impl ast::NamedField { pub fn parent_struct_lit(&self) -> ast::StructLit { self.syntax().ancestors().find_map(ast::StructLit::cast).unwrap() } }