//! Various extension methods to ast Expr Nodes, which are hard to code-generate. use rowan::WalkEvent; use crate::{ ast::{ self, operators::{ArithOp, BinaryOp, CmpOp, LogicOp, Ordering, RangeOp, UnaryOp}, support, AstChildren, AstNode, }, AstToken, SyntaxKind::*, SyntaxToken, T, }; impl ast::AttrsOwner for ast::Expr {} impl ast::Expr { pub fn is_block_like(&self) -> bool { matches!( self, ast::Expr::IfExpr(_) | ast::Expr::LoopExpr(_) | ast::Expr::ForExpr(_) | ast::Expr::WhileExpr(_) | ast::Expr::BlockExpr(_) | ast::Expr::MatchExpr(_) | ast::Expr::EffectExpr(_) ) } pub fn name_ref(&self) -> Option { if let ast::Expr::PathExpr(expr) = self { let path = expr.path()?; let segment = path.segment()?; let name_ref = segment.name_ref()?; if path.qualifier().is_none() { return Some(name_ref); } } None } /// Preorder walk all the expression's child expressions. pub fn walk(&self, cb: &mut dyn FnMut(ast::Expr)) { self.preorder(&mut |ev| { if let WalkEvent::Enter(expr) = ev { cb(expr); } false }) } /// Preorder walk all the expression's child expressions preserving events. /// If the callback returns true on an [`WalkEvent::Enter`], the subtree of the expression will be skipped. /// Note that the subtree may already be skipped due to the context analysis this function does. pub fn preorder(&self, cb: &mut dyn FnMut(WalkEvent) -> bool) { let mut preorder = self.syntax().preorder(); while let Some(event) = preorder.next() { let node = match event { WalkEvent::Enter(node) => node, WalkEvent::Leave(node) => { if let Some(expr) = ast::Expr::cast(node) { cb(WalkEvent::Leave(expr)); } continue; } }; match ast::Stmt::cast(node.clone()) { // recursively walk the initializer, skipping potential const pat expressions // let statements aren't usually nested too deeply so this is fine to recurse on Some(ast::Stmt::LetStmt(l)) => { if let Some(expr) = l.initializer() { expr.preorder(cb); } preorder.skip_subtree(); } // Don't skip subtree since we want to process the expression child next Some(ast::Stmt::ExprStmt(_)) => (), // This might be an expression Some(ast::Stmt::Item(ast::Item::MacroCall(mcall))) => { cb(WalkEvent::Enter(ast::Expr::MacroCall(mcall))); preorder.skip_subtree(); } // skip inner items which might have their own expressions Some(ast::Stmt::Item(_)) => preorder.skip_subtree(), None => { // skip const args, those expressions are a different context if ast::GenericArg::can_cast(node.kind()) { preorder.skip_subtree(); } else if let Some(expr) = ast::Expr::cast(node) { let is_different_context = match &expr { ast::Expr::EffectExpr(effect) => { matches!( effect.effect(), ast::Effect::Async(_) | ast::Effect::Try(_) | ast::Effect::Const(_) ) } ast::Expr::ClosureExpr(_) => true, _ => false, }; let skip = cb(WalkEvent::Enter(expr)); if skip || is_different_context { preorder.skip_subtree(); } } } } } } /// Preorder walk all the expression's child patterns. pub fn walk_patterns(&self, cb: &mut dyn FnMut(ast::Pat)) { let mut preorder = self.syntax().preorder(); while let Some(event) = preorder.next() { let node = match event { WalkEvent::Enter(node) => node, WalkEvent::Leave(_) => continue, }; match ast::Stmt::cast(node.clone()) { Some(ast::Stmt::LetStmt(l)) => { if let Some(pat) = l.pat() { pat.walk(cb); } if let Some(expr) = l.initializer() { expr.walk_patterns(cb); } preorder.skip_subtree(); } // Don't skip subtree since we want to process the expression child next Some(ast::Stmt::ExprStmt(_)) => (), // skip inner items which might have their own patterns Some(ast::Stmt::Item(_)) => preorder.skip_subtree(), None => { // skip const args, those are a different context if ast::GenericArg::can_cast(node.kind()) { preorder.skip_subtree(); } else if let Some(expr) = ast::Expr::cast(node.clone()) { let is_different_context = match &expr { ast::Expr::EffectExpr(effect) => { matches!( effect.effect(), ast::Effect::Async(_) | ast::Effect::Try(_) | ast::Effect::Const(_) ) } ast::Expr::ClosureExpr(_) => true, _ => false, }; if is_different_context { preorder.skip_subtree(); } } else if let Some(pat) = ast::Pat::cast(node) { preorder.skip_subtree(); pat.walk(cb); } } } } } } #[derive(Debug, Clone, PartialEq, Eq)] pub enum ElseBranch { Block(ast::BlockExpr), IfExpr(ast::IfExpr), } impl From for ElseBranch { fn from(block_expr: ast::BlockExpr) -> Self { Self::Block(block_expr) } } impl From for ElseBranch { fn from(if_expr: ast::IfExpr) -> Self { Self::IfExpr(if_expr) } } impl ast::IfExpr { pub fn then_branch(&self) -> Option { self.blocks().next() } pub fn else_branch(&self) -> Option { let res = match self.blocks().nth(1) { Some(block) => ElseBranch::Block(block), None => { let elif: ast::IfExpr = support::child(self.syntax())?; ElseBranch::IfExpr(elif) } }; Some(res) } pub fn blocks(&self) -> AstChildren { support::children(self.syntax()) } } impl ast::PrefixExpr { pub fn op_kind(&self) -> Option { let res = match self.op_token()?.kind() { T![*] => UnaryOp::Deref, T![!] => UnaryOp::Not, T![-] => UnaryOp::Neg, _ => return None, }; Some(res) } pub fn op_token(&self) -> Option { self.syntax().first_child_or_token()?.into_token() } } impl ast::BinExpr { pub fn op_details(&self) -> Option<(SyntaxToken, BinaryOp)> { self.syntax().children_with_tokens().filter_map(|it| it.into_token()).find_map(|c| { #[rustfmt::skip] let bin_op = match c.kind() { T![||] => BinaryOp::LogicOp(LogicOp::Or), T![&&] => BinaryOp::LogicOp(LogicOp::And), T![==] => BinaryOp::CmpOp(CmpOp::Eq { negated: false }), T![!=] => BinaryOp::CmpOp(CmpOp::Eq { negated: true }), T![<=] => BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: false }), T![>=] => BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: false }), T![<] => BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: true }), T![>] => BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: true }), T![+] => BinaryOp::ArithOp(ArithOp::Add), T![*] => BinaryOp::ArithOp(ArithOp::Mul), T![-] => BinaryOp::ArithOp(ArithOp::Sub), T![/] => BinaryOp::ArithOp(ArithOp::Div), T![%] => BinaryOp::ArithOp(ArithOp::Rem), T![<<] => BinaryOp::ArithOp(ArithOp::Shl), T![>>] => BinaryOp::ArithOp(ArithOp::Shr), T![^] => BinaryOp::ArithOp(ArithOp::BitXor), T![|] => BinaryOp::ArithOp(ArithOp::BitOr), T![&] => BinaryOp::ArithOp(ArithOp::BitAnd), T![=] => BinaryOp::Assignment { op: None }, T![+=] => BinaryOp::Assignment { op: Some(ArithOp::Add) }, T![*=] => BinaryOp::Assignment { op: Some(ArithOp::Mul) }, T![-=] => BinaryOp::Assignment { op: Some(ArithOp::Sub) }, T![/=] => BinaryOp::Assignment { op: Some(ArithOp::Div) }, T![%=] => BinaryOp::Assignment { op: Some(ArithOp::Rem) }, T![<<=] => BinaryOp::Assignment { op: Some(ArithOp::Shl) }, T![>>=] => BinaryOp::Assignment { op: Some(ArithOp::Shr) }, T![^=] => BinaryOp::Assignment { op: Some(ArithOp::BitXor) }, T![|=] => BinaryOp::Assignment { op: Some(ArithOp::BitOr) }, T![&=] => BinaryOp::Assignment { op: Some(ArithOp::BitAnd) }, _ => return None, }; Some((c, bin_op)) }) } pub fn op_kind(&self) -> Option { self.op_details().map(|t| t.1) } pub fn op_token(&self) -> Option { self.op_details().map(|t| t.0) } pub fn lhs(&self) -> Option { support::children(self.syntax()).next() } pub fn rhs(&self) -> Option { support::children(self.syntax()).nth(1) } pub fn sub_exprs(&self) -> (Option, Option) { let mut children = support::children(self.syntax()); let first = children.next(); let second = children.next(); (first, second) } } impl ast::RangeExpr { fn op_details(&self) -> Option<(usize, SyntaxToken, RangeOp)> { self.syntax().children_with_tokens().enumerate().find_map(|(ix, child)| { let token = child.into_token()?; let bin_op = match token.kind() { T![..] => RangeOp::Exclusive, T![..=] => RangeOp::Inclusive, _ => return None, }; Some((ix, token, bin_op)) }) } pub fn op_kind(&self) -> Option { self.op_details().map(|t| t.2) } pub fn op_token(&self) -> Option { self.op_details().map(|t| t.1) } pub fn start(&self) -> Option { let op_ix = self.op_details()?.0; self.syntax() .children_with_tokens() .take(op_ix) .find_map(|it| ast::Expr::cast(it.into_node()?)) } pub fn end(&self) -> Option { let op_ix = self.op_details()?.0; self.syntax() .children_with_tokens() .skip(op_ix + 1) .find_map(|it| ast::Expr::cast(it.into_node()?)) } } impl ast::IndexExpr { pub fn base(&self) -> Option { support::children(self.syntax()).next() } pub fn index(&self) -> Option { support::children(self.syntax()).nth(1) } } pub enum ArrayExprKind { Repeat { initializer: Option, repeat: Option }, ElementList(AstChildren), } impl ast::ArrayExpr { pub fn kind(&self) -> ArrayExprKind { if self.is_repeat() { ArrayExprKind::Repeat { initializer: support::children(self.syntax()).next(), repeat: support::children(self.syntax()).nth(1), } } else { ArrayExprKind::ElementList(support::children(self.syntax())) } } fn is_repeat(&self) -> bool { self.syntax().children_with_tokens().any(|it| it.kind() == T![;]) } } #[derive(Clone, Debug, PartialEq, Eq, Hash)] pub enum LiteralKind { String(ast::String), ByteString(ast::ByteString), IntNumber(ast::IntNumber), FloatNumber(ast::FloatNumber), Char, Byte, Bool(bool), } impl ast::Literal { pub fn token(&self) -> SyntaxToken { self.syntax() .children_with_tokens() .find(|e| e.kind() != ATTR && !e.kind().is_trivia()) .and_then(|e| e.into_token()) .unwrap() } pub fn kind(&self) -> LiteralKind { let token = self.token(); if let Some(t) = ast::IntNumber::cast(token.clone()) { return LiteralKind::IntNumber(t); } if let Some(t) = ast::FloatNumber::cast(token.clone()) { return LiteralKind::FloatNumber(t); } if let Some(t) = ast::String::cast(token.clone()) { return LiteralKind::String(t); } if let Some(t) = ast::ByteString::cast(token.clone()) { return LiteralKind::ByteString(t); } match token.kind() { T![true] => LiteralKind::Bool(true), T![false] => LiteralKind::Bool(false), CHAR => LiteralKind::Char, BYTE => LiteralKind::Byte, _ => unreachable!(), } } } #[derive(Debug, Clone, PartialEq, Eq)] pub enum Effect { Async(SyntaxToken), Unsafe(SyntaxToken), Try(SyntaxToken), Const(SyntaxToken), // Very much not an effect, but we stuff it into this node anyway Label(ast::Label), } impl ast::EffectExpr { pub fn effect(&self) -> Effect { if let Some(token) = self.async_token() { return Effect::Async(token); } if let Some(token) = self.unsafe_token() { return Effect::Unsafe(token); } if let Some(token) = self.try_token() { return Effect::Try(token); } if let Some(token) = self.const_token() { return Effect::Const(token); } if let Some(label) = self.label() { return Effect::Label(label); } unreachable!("ast::EffectExpr without Effect") } } impl ast::BlockExpr { /// false if the block is an intrinsic part of the syntax and can't be /// replaced with arbitrary expression. /// /// ```not_rust /// fn foo() { not_stand_alone } /// const FOO: () = { stand_alone }; /// ``` pub fn is_standalone(&self) -> bool { let parent = match self.syntax().parent() { Some(it) => it, None => return true, }; !matches!(parent.kind(), FN | IF_EXPR | WHILE_EXPR | LOOP_EXPR | EFFECT_EXPR) } } #[test] fn test_literal_with_attr() { let parse = ast::SourceFile::parse(r#"const _: &str = { #[attr] "Hello" };"#); let lit = parse.tree().syntax().descendants().find_map(ast::Literal::cast).unwrap(); assert_eq!(lit.token().text(), r#""Hello""#); } impl ast::RecordExprField { pub fn parent_record_lit(&self) -> ast::RecordExpr { self.syntax().ancestors().find_map(ast::RecordExpr::cast).unwrap() } }