//! Methods for lowering the HIR to types. There are two main cases here: //! //! - Lowering a type reference like `&usize` or `Option` to a //! type: The entry point for this is `Ty::from_hir`. //! - Building the type for an item: This happens through the `type_for_def` query. //! //! This usually involves resolving names, collecting generic arguments etc. use std::iter; use std::sync::Arc; use super::{ FnSig, GenericPredicate, ProjectionPredicate, ProjectionTy, Substs, TraitRef, Ty, TypeCtor, TypeWalk, }; use crate::{ adt::VariantDef, db::HirDatabase, generics::HasGenericParams, generics::{GenericDef, WherePredicate}, nameres::Namespace, path::{GenericArg, PathSegment}, resolve::{Resolver, TypeNs}, ty::Adt, type_ref::{TypeBound, TypeRef}, BuiltinType, Const, Enum, EnumVariant, Function, ModuleDef, Path, Static, Struct, StructField, Trait, TypeAlias, Union, }; impl Ty { pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self { match type_ref { TypeRef::Never => Ty::simple(TypeCtor::Never), TypeRef::Tuple(inner) => { let inner_tys = inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::>(); Ty::apply( TypeCtor::Tuple { cardinality: inner_tys.len() as u16 }, Substs(inner_tys.into()), ) } TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path), TypeRef::RawPtr(inner, mutability) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty) } TypeRef::Array(inner) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::apply_one(TypeCtor::Array, inner_ty) } TypeRef::Slice(inner) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::apply_one(TypeCtor::Slice, inner_ty) } TypeRef::Reference(inner, mutability) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty) } TypeRef::Placeholder => Ty::Unknown, TypeRef::Fn(params) => { let inner_tys = params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::>(); let sig = Substs(inner_tys.into()); Ty::apply(TypeCtor::FnPtr { num_args: sig.len() as u16 - 1 }, sig) } TypeRef::DynTrait(bounds) => { let self_ty = Ty::Bound(0); let predicates = bounds .iter() .flat_map(|b| { GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone()) }) .collect::>(); Ty::Dyn(predicates.into()) } TypeRef::ImplTrait(bounds) => { let self_ty = Ty::Bound(0); let predicates = bounds .iter() .flat_map(|b| { GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone()) }) .collect::>(); Ty::Opaque(predicates.into()) } TypeRef::Error => Ty::Unknown, } } pub(crate) fn from_partly_resolved_hir_path( db: &impl HirDatabase, resolver: &Resolver, resolution: TypeNs, resolved_segment: &PathSegment, remaining_segments: &[PathSegment], ) -> Ty { let ty = match resolution { TypeNs::Trait(trait_) => { let trait_ref = TraitRef::from_resolved_path(db, resolver, trait_, resolved_segment, None); return if remaining_segments.len() == 1 { let segment = &remaining_segments[0]; match trait_ref .trait_ .associated_type_by_name_including_super_traits(db, &segment.name) { Some(associated_ty) => { // FIXME handle type parameters on the segment Ty::Projection(ProjectionTy { associated_ty, parameters: trait_ref.substs, }) } None => { // associated type not found (FIXME: report error) Ty::Unknown } } } else if remaining_segments.len() > 1 { // FIXME report error (ambiguous associated type) Ty::Unknown } else { Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)])) }; } TypeNs::GenericParam(idx) => { // FIXME: maybe return name in resolution? let name = resolved_segment.name.clone(); Ty::Param { idx, name } } TypeNs::SelfType(impl_block) => impl_block.target_ty(db), TypeNs::Adt(it) => Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()), TypeNs::BuiltinType(it) => { Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()) } TypeNs::TypeAlias(it) => { Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()) } // FIXME: report error TypeNs::EnumVariant(_) => return Ty::Unknown, }; if remaining_segments.len() == 1 { // resolve unselected assoc types let segment = &remaining_segments[0]; Ty::select_associated_type(db, resolver, ty, segment) } else if remaining_segments.len() > 1 { // FIXME report error (ambiguous associated type) Ty::Unknown } else { ty } } pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Ty { // Resolve the path (in type namespace) let (resolution, remaining_index) = match resolver.resolve_path_in_type_ns(db, path) { Some(it) => it, None => return Ty::Unknown, }; let (resolved_segment, remaining_segments) = match remaining_index { None => ( path.segments.last().expect("resolved path has at least one element"), &[] as &[PathSegment], ), Some(i) => (&path.segments[i - 1], &path.segments[i..]), }; Ty::from_partly_resolved_hir_path( db, resolver, resolution, resolved_segment, remaining_segments, ) } fn select_associated_type( db: &impl HirDatabase, resolver: &Resolver, self_ty: Ty, segment: &PathSegment, ) -> Ty { let env = trait_env(db, resolver); let traits_from_env = env.trait_predicates_for_self_ty(&self_ty).map(|tr| tr.trait_); let traits = traits_from_env.flat_map(|t| t.all_super_traits(db)); let mut result = Ty::Unknown; for t in traits { if let Some(associated_ty) = t.associated_type_by_name(db, &segment.name) { let generics = t.generic_params(db); let mut substs = Vec::new(); substs.push(self_ty.clone()); substs.extend( iter::repeat(Ty::Unknown).take(generics.count_params_including_parent() - 1), ); // FIXME handle type parameters on the segment result = Ty::Projection(ProjectionTy { associated_ty, parameters: substs.into() }); break; } } result } fn from_hir_path_inner( db: &impl HirDatabase, resolver: &Resolver, segment: &PathSegment, typable: TypableDef, ) -> Ty { let ty = db.type_for_def(typable, Namespace::Types); let substs = Ty::substs_from_path_segment(db, resolver, segment, typable); ty.subst(&substs) } pub(super) fn substs_from_path_segment( db: &impl HirDatabase, resolver: &Resolver, segment: &PathSegment, resolved: TypableDef, ) -> Substs { let def_generic: Option = match resolved { TypableDef::Function(func) => Some(func.into()), TypableDef::Adt(adt) => Some(adt.into()), TypableDef::EnumVariant(var) => Some(var.parent_enum(db).into()), TypableDef::TypeAlias(t) => Some(t.into()), TypableDef::Const(_) | TypableDef::Static(_) | TypableDef::BuiltinType(_) => None, }; substs_from_path_segment(db, resolver, segment, def_generic, false) } /// Collect generic arguments from a path into a `Substs`. See also /// `create_substs_for_ast_path` and `def_to_ty` in rustc. pub(super) fn substs_from_path( db: &impl HirDatabase, resolver: &Resolver, path: &Path, resolved: TypableDef, ) -> Substs { let last = path.segments.last().expect("path should have at least one segment"); let segment = match resolved { TypableDef::Function(_) | TypableDef::Adt(_) | TypableDef::Const(_) | TypableDef::Static(_) | TypableDef::TypeAlias(_) | TypableDef::BuiltinType(_) => last, TypableDef::EnumVariant(_) => { // the generic args for an enum variant may be either specified // on the segment referring to the enum, or on the segment // referring to the variant. So `Option::::None` and // `Option::None::` are both allowed (though the former is // preferred). See also `def_ids_for_path_segments` in rustc. let len = path.segments.len(); let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() { // Option::::None &path.segments[len - 2] } else { // Option::None:: last }; segment } }; Ty::substs_from_path_segment(db, resolver, segment, resolved) } } pub(super) fn substs_from_path_segment( db: &impl HirDatabase, resolver: &Resolver, segment: &PathSegment, def_generic: Option, add_self_param: bool, ) -> Substs { let mut substs = Vec::new(); let def_generics = def_generic.map(|def| def.generic_params(db)).unwrap_or_default(); let parent_param_count = def_generics.count_parent_params(); substs.extend(iter::repeat(Ty::Unknown).take(parent_param_count)); if add_self_param { // FIXME this add_self_param argument is kind of a hack: Traits have the // Self type as an implicit first type parameter, but it can't be // actually provided in the type arguments // (well, actually sometimes it can, in the form of type-relative paths: `::default()`) substs.push(Ty::Unknown); } if let Some(generic_args) = &segment.args_and_bindings { // if args are provided, it should be all of them, but we can't rely on that let self_param_correction = if add_self_param { 1 } else { 0 }; let param_count = def_generics.params.len() - self_param_correction; for arg in generic_args.args.iter().take(param_count) { match arg { GenericArg::Type(type_ref) => { let ty = Ty::from_hir(db, resolver, type_ref); substs.push(ty); } } } } // add placeholders for args that were not provided let supplied_params = substs.len(); for _ in supplied_params..def_generics.count_params_including_parent() { substs.push(Ty::Unknown); } assert_eq!(substs.len(), def_generics.count_params_including_parent()); // handle defaults if let Some(def_generic) = def_generic { let default_substs = db.generic_defaults(def_generic); assert_eq!(substs.len(), default_substs.len()); for (i, default_ty) in default_substs.iter().enumerate() { if substs[i] == Ty::Unknown { substs[i] = default_ty.clone(); } } } Substs(substs.into()) } impl TraitRef { pub(crate) fn from_path( db: &impl HirDatabase, resolver: &Resolver, path: &Path, explicit_self_ty: Option, ) -> Option { let resolved = match resolver.resolve_path_in_type_ns_fully(db, &path)? { TypeNs::Trait(tr) => tr, _ => return None, }; let segment = path.segments.last().expect("path should have at least one segment"); Some(TraitRef::from_resolved_path(db, resolver, resolved, segment, explicit_self_ty)) } fn from_resolved_path( db: &impl HirDatabase, resolver: &Resolver, resolved: Trait, segment: &PathSegment, explicit_self_ty: Option, ) -> Self { let mut substs = TraitRef::substs_from_path(db, resolver, segment, resolved); if let Some(self_ty) = explicit_self_ty { // FIXME this could be nicer let mut substs_vec = substs.0.to_vec(); substs_vec[0] = self_ty; substs.0 = substs_vec.into(); } TraitRef { trait_: resolved, substs } } pub(crate) fn from_hir( db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef, explicit_self_ty: Option, ) -> Option { let path = match type_ref { TypeRef::Path(path) => path, _ => return None, }; TraitRef::from_path(db, resolver, path, explicit_self_ty) } fn substs_from_path( db: &impl HirDatabase, resolver: &Resolver, segment: &PathSegment, resolved: Trait, ) -> Substs { let has_self_param = segment.args_and_bindings.as_ref().map(|a| a.has_self_type).unwrap_or(false); substs_from_path_segment(db, resolver, segment, Some(resolved.into()), !has_self_param) } pub(crate) fn for_trait(db: &impl HirDatabase, trait_: Trait) -> TraitRef { let substs = Substs::identity(&trait_.generic_params(db)); TraitRef { trait_, substs } } pub(crate) fn from_type_bound( db: &impl HirDatabase, resolver: &Resolver, bound: &TypeBound, self_ty: Ty, ) -> Option { match bound { TypeBound::Path(path) => TraitRef::from_path(db, resolver, path, Some(self_ty)), TypeBound::Error => None, } } } impl GenericPredicate { pub(crate) fn from_where_predicate<'a>( db: &'a impl HirDatabase, resolver: &'a Resolver, where_predicate: &'a WherePredicate, ) -> impl Iterator + 'a { let self_ty = Ty::from_hir(db, resolver, &where_predicate.type_ref); GenericPredicate::from_type_bound(db, resolver, &where_predicate.bound, self_ty) } pub(crate) fn from_type_bound<'a>( db: &'a impl HirDatabase, resolver: &'a Resolver, bound: &'a TypeBound, self_ty: Ty, ) -> impl Iterator + 'a { let trait_ref = TraitRef::from_type_bound(db, &resolver, bound, self_ty); iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented)) .chain( trait_ref.into_iter().flat_map(move |tr| { assoc_type_bindings_from_type_bound(db, resolver, bound, tr) }), ) } } fn assoc_type_bindings_from_type_bound<'a>( db: &'a impl HirDatabase, resolver: &'a Resolver, bound: &'a TypeBound, trait_ref: TraitRef, ) -> impl Iterator + 'a { let last_segment = match bound { TypeBound::Path(path) => path.segments.last(), TypeBound::Error => None, }; last_segment .into_iter() .flat_map(|segment| segment.args_and_bindings.iter()) .flat_map(|args_and_bindings| args_and_bindings.bindings.iter()) .map(move |(name, type_ref)| { let associated_ty = match trait_ref.trait_.associated_type_by_name_including_super_traits(db, &name) { None => return GenericPredicate::Error, Some(t) => t, }; let projection_ty = ProjectionTy { associated_ty, parameters: trait_ref.substs.clone() }; let ty = Ty::from_hir(db, resolver, type_ref); let projection_predicate = ProjectionPredicate { projection_ty, ty }; GenericPredicate::Projection(projection_predicate) }) } /// Build the declared type of an item. This depends on the namespace; e.g. for /// `struct Foo(usize)`, we have two types: The type of the struct itself, and /// the constructor function `(usize) -> Foo` which lives in the values /// namespace. pub(crate) fn type_for_def(db: &impl HirDatabase, def: TypableDef, ns: Namespace) -> Ty { match (def, ns) { (TypableDef::Function(f), Namespace::Values) => type_for_fn(db, f), (TypableDef::Adt(Adt::Struct(s)), Namespace::Values) => type_for_struct_constructor(db, s), (TypableDef::Adt(adt), Namespace::Types) => type_for_adt(db, adt), (TypableDef::EnumVariant(v), Namespace::Values) => type_for_enum_variant_constructor(db, v), (TypableDef::TypeAlias(t), Namespace::Types) => type_for_type_alias(db, t), (TypableDef::Const(c), Namespace::Values) => type_for_const(db, c), (TypableDef::Static(c), Namespace::Values) => type_for_static(db, c), (TypableDef::BuiltinType(t), Namespace::Types) => type_for_builtin(t), // 'error' cases: (TypableDef::Function(_), Namespace::Types) => Ty::Unknown, (TypableDef::Adt(Adt::Union(_)), Namespace::Values) => Ty::Unknown, (TypableDef::Adt(Adt::Enum(_)), Namespace::Values) => Ty::Unknown, (TypableDef::EnumVariant(_), Namespace::Types) => Ty::Unknown, (TypableDef::TypeAlias(_), Namespace::Values) => Ty::Unknown, (TypableDef::Const(_), Namespace::Types) => Ty::Unknown, (TypableDef::Static(_), Namespace::Types) => Ty::Unknown, (TypableDef::BuiltinType(_), Namespace::Values) => Ty::Unknown, } } /// Build the signature of a callable item (function, struct or enum variant). pub(crate) fn callable_item_sig(db: &impl HirDatabase, def: CallableDef) -> FnSig { match def { CallableDef::Function(f) => fn_sig_for_fn(db, f), CallableDef::Struct(s) => fn_sig_for_struct_constructor(db, s), CallableDef::EnumVariant(e) => fn_sig_for_enum_variant_constructor(db, e), } } /// Build the type of a specific field of a struct or enum variant. pub(crate) fn type_for_field(db: &impl HirDatabase, field: StructField) -> Ty { let parent_def = field.parent_def(db); let resolver = match parent_def { VariantDef::Struct(it) => it.resolver(db), VariantDef::EnumVariant(it) => it.parent_enum(db).resolver(db), }; let var_data = parent_def.variant_data(db); let type_ref = &var_data.fields().unwrap()[field.id].type_ref; Ty::from_hir(db, &resolver, type_ref) } pub(crate) fn trait_env( db: &impl HirDatabase, resolver: &Resolver, ) -> Arc { let predicates = resolver .where_predicates_in_scope() .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred)) .collect::>(); Arc::new(super::TraitEnvironment { predicates }) } /// Resolve the where clause(s) of an item with generics. pub(crate) fn generic_predicates_query( db: &impl HirDatabase, def: GenericDef, ) -> Arc<[GenericPredicate]> { let resolver = def.resolver(db); let predicates = resolver .where_predicates_in_scope() .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred)) .collect::>(); predicates.into() } /// Resolve the default type params from generics pub(crate) fn generic_defaults_query(db: &impl HirDatabase, def: GenericDef) -> Substs { let resolver = def.resolver(db); let generic_params = def.generic_params(db); let defaults = generic_params .params_including_parent() .into_iter() .map(|p| { p.default.as_ref().map_or(Ty::Unknown, |path| Ty::from_hir_path(db, &resolver, path)) }) .collect::>(); Substs(defaults.into()) } fn fn_sig_for_fn(db: &impl HirDatabase, def: Function) -> FnSig { let data = def.data(db); let resolver = def.resolver(db); let params = data.params().iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::>(); let ret = Ty::from_hir(db, &resolver, data.ret_type()); FnSig::from_params_and_return(params, ret) } /// Build the declared type of a function. This should not need to look at the /// function body. fn type_for_fn(db: &impl HirDatabase, def: Function) -> Ty { let generics = def.generic_params(db); let substs = Substs::identity(&generics); Ty::apply(TypeCtor::FnDef(def.into()), substs) } /// Build the declared type of a const. fn type_for_const(db: &impl HirDatabase, def: Const) -> Ty { let data = def.data(db); let resolver = def.resolver(db); Ty::from_hir(db, &resolver, data.type_ref()) } /// Build the declared type of a static. fn type_for_static(db: &impl HirDatabase, def: Static) -> Ty { let data = def.data(db); let resolver = def.resolver(db); Ty::from_hir(db, &resolver, data.type_ref()) } /// Build the declared type of a static. fn type_for_builtin(def: BuiltinType) -> Ty { Ty::simple(match def { BuiltinType::Char => TypeCtor::Char, BuiltinType::Bool => TypeCtor::Bool, BuiltinType::Str => TypeCtor::Str, BuiltinType::Int(ty) => TypeCtor::Int(ty.into()), BuiltinType::Float(ty) => TypeCtor::Float(ty.into()), }) } fn fn_sig_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> FnSig { let var_data = def.variant_data(db); let fields = match var_data.fields() { Some(fields) => fields, None => panic!("fn_sig_for_struct_constructor called on unit struct"), }; let resolver = def.resolver(db); let params = fields .iter() .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref)) .collect::>(); let ret = type_for_adt(db, def); FnSig::from_params_and_return(params, ret) } /// Build the type of a tuple struct constructor. fn type_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> Ty { let var_data = def.variant_data(db); if var_data.fields().is_none() { return type_for_adt(db, def); // Unit struct } let generics = def.generic_params(db); let substs = Substs::identity(&generics); Ty::apply(TypeCtor::FnDef(def.into()), substs) } fn fn_sig_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> FnSig { let var_data = def.variant_data(db); let fields = match var_data.fields() { Some(fields) => fields, None => panic!("fn_sig_for_enum_variant_constructor called for unit variant"), }; let resolver = def.parent_enum(db).resolver(db); let params = fields .iter() .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref)) .collect::>(); let generics = def.parent_enum(db).generic_params(db); let substs = Substs::identity(&generics); let ret = type_for_adt(db, def.parent_enum(db)).subst(&substs); FnSig::from_params_and_return(params, ret) } /// Build the type of a tuple enum variant constructor. fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> Ty { let var_data = def.variant_data(db); if var_data.fields().is_none() { return type_for_adt(db, def.parent_enum(db)); // Unit variant } let generics = def.parent_enum(db).generic_params(db); let substs = Substs::identity(&generics); Ty::apply(TypeCtor::FnDef(def.into()), substs) } fn type_for_adt(db: &impl HirDatabase, adt: impl Into + HasGenericParams) -> Ty { let generics = adt.generic_params(db); Ty::apply(TypeCtor::Adt(adt.into()), Substs::identity(&generics)) } fn type_for_type_alias(db: &impl HirDatabase, t: TypeAlias) -> Ty { let generics = t.generic_params(db); let resolver = t.resolver(db); let type_ref = t.type_ref(db); let substs = Substs::identity(&generics); let inner = Ty::from_hir(db, &resolver, &type_ref.unwrap_or(TypeRef::Error)); inner.subst(&substs) } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum TypableDef { Function(Function), Adt(Adt), EnumVariant(EnumVariant), TypeAlias(TypeAlias), Const(Const), Static(Static), BuiltinType(BuiltinType), } impl_froms!( TypableDef: Function, Adt(Struct, Enum, Union), EnumVariant, TypeAlias, Const, Static, BuiltinType ); impl From for Option { fn from(def: ModuleDef) -> Option { let res = match def { ModuleDef::Function(f) => f.into(), ModuleDef::Adt(adt) => adt.into(), ModuleDef::EnumVariant(v) => v.into(), ModuleDef::TypeAlias(t) => t.into(), ModuleDef::Const(v) => v.into(), ModuleDef::Static(v) => v.into(), ModuleDef::BuiltinType(t) => t.into(), ModuleDef::Module(_) | ModuleDef::Trait(_) => return None, }; Some(res) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum CallableDef { Function(Function), Struct(Struct), EnumVariant(EnumVariant), } impl_froms!(CallableDef: Function, Struct, EnumVariant); impl From for GenericDef { fn from(def: CallableDef) -> GenericDef { match def { CallableDef::Function(f) => f.into(), CallableDef::Struct(s) => s.into(), CallableDef::EnumVariant(e) => e.into(), } } }