//! Helper functions for working with def, which don't need to be a separate //! query, but can't be computed directly from `*Data` (ie, which need a `db`). use std::iter; use base_db::CrateId; use chalk_ir::{fold::Shift, BoundVar, DebruijnIndex}; use hir_def::{ db::DefDatabase, generics::{ GenericParams, TypeOrConstParamData, TypeParamProvenance, WherePredicate, WherePredicateTypeTarget, }, intern::Interned, resolver::{HasResolver, TypeNs}, type_ref::{TraitBoundModifier, TypeRef}, ConstParamId, FunctionId, GenericDefId, ItemContainerId, Lookup, TraitId, TypeAliasId, TypeOrConstParamId, TypeParamId, }; use hir_expand::name::{known, Name}; use itertools::Either; use rustc_hash::FxHashSet; use smallvec::{smallvec, SmallVec}; use syntax::SmolStr; use crate::{ db::HirDatabase, ChalkTraitId, ConstData, ConstValue, GenericArgData, Interner, Substitution, TraitRef, TraitRefExt, TyKind, WhereClause, }; pub(crate) fn fn_traits(db: &dyn DefDatabase, krate: CrateId) -> impl Iterator { [ db.lang_item(krate, SmolStr::new_inline("fn")), db.lang_item(krate, SmolStr::new_inline("fn_mut")), db.lang_item(krate, SmolStr::new_inline("fn_once")), ] .into_iter() .flatten() .flat_map(|it| it.as_trait()) } fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> SmallVec<[TraitId; 4]> { let resolver = trait_.resolver(db); // returning the iterator directly doesn't easily work because of // lifetime problems, but since there usually shouldn't be more than a // few direct traits this should be fine (we could even use some kind of // SmallVec if performance is a concern) let generic_params = db.generic_params(trait_.into()); let trait_self = generic_params.find_trait_self_param(); generic_params .where_predicates .iter() .filter_map(|pred| match pred { WherePredicate::ForLifetime { target, bound, .. } | WherePredicate::TypeBound { target, bound } => { let is_trait = match target { WherePredicateTypeTarget::TypeRef(type_ref) => match &**type_ref { TypeRef::Path(p) => p.is_self_type(), _ => false, }, WherePredicateTypeTarget::TypeOrConstParam(local_id) => { Some(*local_id) == trait_self } }; match is_trait { true => bound.as_path(), false => None, } } WherePredicate::Lifetime { .. } => None, }) .filter(|(_, bound_modifier)| matches!(bound_modifier, TraitBoundModifier::None)) .filter_map(|(path, _)| match resolver.resolve_path_in_type_ns_fully(db, path.mod_path()) { Some(TypeNs::TraitId(t)) => Some(t), _ => None, }) .collect() } fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef) -> Vec { // returning the iterator directly doesn't easily work because of // lifetime problems, but since there usually shouldn't be more than a // few direct traits this should be fine (we could even use some kind of // SmallVec if performance is a concern) let generic_params = db.generic_params(trait_ref.hir_trait_id().into()); let trait_self = match generic_params.find_trait_self_param() { Some(p) => TypeOrConstParamId { parent: trait_ref.hir_trait_id().into(), local_id: p }, None => return Vec::new(), }; db.generic_predicates_for_param(trait_self.parent, trait_self, None) .iter() .filter_map(|pred| { pred.as_ref().filter_map(|pred| match pred.skip_binders() { // FIXME: how to correctly handle higher-ranked bounds here? WhereClause::Implemented(tr) => Some( tr.clone() .shifted_out_to(Interner, DebruijnIndex::ONE) .expect("FIXME unexpected higher-ranked trait bound"), ), _ => None, }) }) .map(|pred| pred.substitute(Interner, &trait_ref.substitution)) .collect() } /// Returns an iterator over the whole super trait hierarchy (including the /// trait itself). pub fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> SmallVec<[TraitId; 4]> { // we need to take care a bit here to avoid infinite loops in case of cycles // (i.e. if we have `trait A: B; trait B: A;`) let mut result = smallvec![trait_]; let mut i = 0; while let Some(&t) = result.get(i) { // yeah this is quadratic, but trait hierarchies should be flat // enough that this doesn't matter for tt in direct_super_traits(db, t) { if !result.contains(&tt) { result.push(tt); } } i += 1; } result } /// Given a trait ref (`Self: Trait`), builds all the implied trait refs for /// super traits. The original trait ref will be included. So the difference to /// `all_super_traits` is that we keep track of type parameters; for example if /// we have `Self: Trait` and `Trait: OtherTrait` we'll get /// `Self: OtherTrait`. pub(super) fn all_super_trait_refs(db: &dyn HirDatabase, trait_ref: TraitRef) -> SuperTraits<'_> { SuperTraits { db, seen: iter::once(trait_ref.trait_id).collect(), stack: vec![trait_ref] } } pub(super) struct SuperTraits<'a> { db: &'a dyn HirDatabase, stack: Vec, seen: FxHashSet, } impl<'a> SuperTraits<'a> { fn elaborate(&mut self, trait_ref: &TraitRef) { let mut trait_refs = direct_super_trait_refs(self.db, trait_ref); trait_refs.retain(|tr| !self.seen.contains(&tr.trait_id)); self.stack.extend(trait_refs); } } impl<'a> Iterator for SuperTraits<'a> { type Item = TraitRef; fn next(&mut self) -> Option { if let Some(next) = self.stack.pop() { self.elaborate(&next); Some(next) } else { None } } } pub(super) fn associated_type_by_name_including_super_traits( db: &dyn HirDatabase, trait_ref: TraitRef, name: &Name, ) -> Option<(TraitRef, TypeAliasId)> { all_super_trait_refs(db, trait_ref).find_map(|t| { let assoc_type = db.trait_data(t.hir_trait_id()).associated_type_by_name(name)?; Some((t, assoc_type)) }) } pub(crate) fn generics(db: &dyn DefDatabase, def: GenericDefId) -> Generics { let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def))); if parent_generics.is_some() && matches!(def, GenericDefId::TypeAliasId(_)) { let params = db.generic_params(def); let parent_params = &parent_generics.as_ref().unwrap().params; let has_consts = params.iter().any(|(_, x)| matches!(x, TypeOrConstParamData::ConstParamData(_))); let parent_has_consts = parent_params.iter().any(|(_, x)| matches!(x, TypeOrConstParamData::ConstParamData(_))); return if has_consts || parent_has_consts { // XXX: treat const generic associated types as not existing to avoid crashes // (#11769) // // Note: Also crashes when the parent has const generics (also even if the GAT // doesn't use them), see `tests::regression::gat_crash_3` for an example. // Avoids that by disabling GATs when the parent (i.e. `impl` block) has // const generics (#12193). // // Chalk expects the inner associated type's parameters to come // *before*, not after the trait's generics as we've always done it. // Adapting to this requires a larger refactoring cov_mark::hit!(ignore_gats); Generics { def, params: Interned::new(Default::default()), parent_generics } } else { Generics { def, params, parent_generics } }; } Generics { def, params: db.generic_params(def), parent_generics } } #[derive(Debug)] pub(crate) struct Generics { def: GenericDefId, pub(crate) params: Interned, parent_generics: Option>, } impl Generics { pub(crate) fn iter_id<'a>( &'a self, ) -> impl Iterator> + 'a { self.iter().map(|(id, data)| match data { TypeOrConstParamData::TypeParamData(_) => Either::Left(TypeParamId::from_unchecked(id)), TypeOrConstParamData::ConstParamData(_) => { Either::Right(ConstParamId::from_unchecked(id)) } }) } /// Iterator over types and const params of parent, then self. pub(crate) fn iter<'a>( &'a self, ) -> impl DoubleEndedIterator + 'a { let to_toc_id = |it: &'a Generics| { move |(local_id, p)| (TypeOrConstParamId { parent: it.def, local_id }, p) }; self.parent_generics() .into_iter() .flat_map(move |it| it.params.iter().map(to_toc_id(it))) .chain(self.params.iter().map(to_toc_id(self))) } /// Iterator over types and const params of parent. pub(crate) fn iter_parent<'a>( &'a self, ) -> impl Iterator + 'a { self.parent_generics().into_iter().flat_map(|it| { let to_toc_id = move |(local_id, p)| (TypeOrConstParamId { parent: it.def, local_id }, p); it.params.iter().map(to_toc_id) }) } pub(crate) fn len(&self) -> usize { let parent = self.parent_generics().map_or(0, Generics::len); let child = self.params.type_or_consts.len(); parent + child } /// (parent total, self param, type param list, const param list, impl trait) pub(crate) fn provenance_split(&self) -> (usize, usize, usize, usize, usize) { let ty_iter = || self.params.iter().filter_map(|x| x.1.type_param()); let self_params = ty_iter().filter(|p| p.provenance == TypeParamProvenance::TraitSelf).count(); let type_params = ty_iter().filter(|p| p.provenance == TypeParamProvenance::TypeParamList).count(); let impl_trait_params = ty_iter().filter(|p| p.provenance == TypeParamProvenance::ArgumentImplTrait).count(); let const_params = self.params.iter().filter_map(|x| x.1.const_param()).count(); let parent_len = self.parent_generics().map_or(0, Generics::len); (parent_len, self_params, type_params, const_params, impl_trait_params) } pub(crate) fn param_idx(&self, param: TypeOrConstParamId) -> Option { Some(self.find_param(param)?.0) } fn find_param(&self, param: TypeOrConstParamId) -> Option<(usize, &TypeOrConstParamData)> { if param.parent == self.def { let (idx, (_local_id, data)) = self.params.iter().enumerate().find(|(_, (idx, _))| *idx == param.local_id)?; let parent_len = self.parent_generics().map_or(0, Generics::len); Some((parent_len + idx, data)) } else { self.parent_generics().and_then(|g| g.find_param(param)) } } fn parent_generics(&self) -> Option<&Generics> { self.parent_generics.as_ref().map(|it| &**it) } /// Returns a Substitution that replaces each parameter by a bound variable. pub(crate) fn bound_vars_subst( &self, db: &dyn HirDatabase, debruijn: DebruijnIndex, ) -> Substitution { Substitution::from_iter( Interner, self.iter_id().enumerate().map(|(idx, id)| match id { Either::Left(_) => GenericArgData::Ty( TyKind::BoundVar(BoundVar::new(debruijn, idx)).intern(Interner), ) .intern(Interner), Either::Right(id) => GenericArgData::Const( ConstData { value: ConstValue::BoundVar(BoundVar::new(debruijn, idx)), ty: db.const_param_ty(id), } .intern(Interner), ) .intern(Interner), }), ) } /// Returns a Substitution that replaces each parameter by itself (i.e. `Ty::Param`). pub(crate) fn placeholder_subst(&self, db: &dyn HirDatabase) -> Substitution { Substitution::from_iter( Interner, self.iter_id().map(|id| match id { Either::Left(id) => GenericArgData::Ty( TyKind::Placeholder(crate::to_placeholder_idx(db, id.into())).intern(Interner), ) .intern(Interner), Either::Right(id) => GenericArgData::Const( ConstData { value: ConstValue::Placeholder(crate::to_placeholder_idx(db, id.into())), ty: db.const_param_ty(id), } .intern(Interner), ) .intern(Interner), }), ) } } fn parent_generic_def(db: &dyn DefDatabase, def: GenericDefId) -> Option { let container = match def { GenericDefId::FunctionId(it) => it.lookup(db).container, GenericDefId::TypeAliasId(it) => it.lookup(db).container, GenericDefId::ConstId(it) => it.lookup(db).container, GenericDefId::EnumVariantId(it) => return Some(it.parent.into()), GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) => return None, }; match container { ItemContainerId::ImplId(it) => Some(it.into()), ItemContainerId::TraitId(it) => Some(it.into()), ItemContainerId::ModuleId(_) | ItemContainerId::ExternBlockId(_) => None, } } pub fn is_fn_unsafe_to_call(db: &dyn HirDatabase, func: FunctionId) -> bool { let data = db.function_data(func); if data.has_unsafe_kw() { return true; } match func.lookup(db.upcast()).container { hir_def::ItemContainerId::ExternBlockId(block) => { // Function in an `extern` block are always unsafe to call, except when it has // `"rust-intrinsic"` ABI there are a few exceptions. let id = block.lookup(db.upcast()).id; !matches!( id.item_tree(db.upcast())[id.value].abi.as_deref(), Some("rust-intrinsic") if !is_intrinsic_fn_unsafe(&data.name) ) } _ => false, } } /// Returns `true` if the given intrinsic is unsafe to call, or false otherwise. fn is_intrinsic_fn_unsafe(name: &Name) -> bool { // Should be kept in sync with https://github.com/rust-lang/rust/blob/532d2b14c05f9bc20b2d27cbb5f4550d28343a36/compiler/rustc_typeck/src/check/intrinsic.rs#L72-L106 ![ known::abort, known::add_with_overflow, known::bitreverse, known::black_box, known::bswap, known::caller_location, known::ctlz, known::ctpop, known::cttz, known::discriminant_value, known::forget, known::likely, known::maxnumf32, known::maxnumf64, known::min_align_of, known::minnumf32, known::minnumf64, known::mul_with_overflow, known::needs_drop, known::ptr_guaranteed_eq, known::ptr_guaranteed_ne, known::rotate_left, known::rotate_right, known::rustc_peek, known::saturating_add, known::saturating_sub, known::size_of, known::sub_with_overflow, known::type_id, known::type_name, known::unlikely, known::variant_count, known::wrapping_add, known::wrapping_mul, known::wrapping_sub, ] .contains(name) }