use { parser_impl::ParserImpl, SyntaxKind::{self, ERROR}, }; #[derive(Clone, Copy)] pub(crate) struct TokenSet(pub(crate) u128); fn mask(kind: SyntaxKind) -> u128 { 1u128 << (kind as usize) } impl TokenSet { pub fn contains(&self, kind: SyntaxKind) -> bool { self.0 & mask(kind) != 0 } } #[macro_export] macro_rules! token_set { ($($t:ident),*) => { TokenSet($(1u128 << ($t as usize))|*) }; ($($t:ident),* ,) => { token_set!($($t),*) }; } #[macro_export] macro_rules! token_set_union { ($($ts:expr),*) => { TokenSet($($ts.0)|*) }; ($($ts:expr),* ,) => { token_set_union!($($ts),*) }; } /// `Parser` struct provides the low-level API for /// navigating through the stream of tokens and /// constructing the parse tree. The actual parsing /// happens in the `grammar` module. /// /// However, the result of this `Parser` is not a real /// tree, but rather a flat stream of events of the form /// "start expression, consume number literal, /// finish expression". See `Event` docs for more. pub(crate) struct Parser<'t>(pub(super) ParserImpl<'t>); impl<'t> Parser<'t> { /// Returns the kind of the current token. /// If parser has already reached the end of input, /// the special `EOF` kind is returned. pub(crate) fn current(&self) -> SyntaxKind { self.nth(0) } /// Lookahead operation: returns the kind of the next nth /// token. pub(crate) fn nth(&self, n: u32) -> SyntaxKind { self.0.nth(n) } /// Checks if the current token is `kind`. pub(crate) fn at(&self, kind: SyntaxKind) -> bool { self.current() == kind } /// Checks if the current token is contextual keyword with text `t`. pub(crate) fn at_contextual_kw(&self, t: &str) -> bool { self.0.at_kw(t) } /// Starts a new node in the syntax tree. All nodes and tokens /// consumed between the `start` and the corresponding `Marker::complete` /// belong to the same node. pub(crate) fn start(&mut self) -> Marker { Marker(self.0.start()) } /// Advances the parser by one token. pub(crate) fn bump(&mut self) { self.0.bump(); } /// Advances the parser by one token, remapping its kind. /// This is useful to create contextual keywords from /// identifiers. For example, the lexer creates an `union` /// *identifier* token, but the parser remaps it to the /// `union` keyword, and keyword is what ends up in the /// final tree. pub(crate) fn bump_remap(&mut self, kind: SyntaxKind) { self.0.bump_remap(kind); } /// Emit error with the `message` /// TODO: this should be much more fancy and support /// structured errors with spans and notes, like rustc /// does. pub(crate) fn error>(&mut self, message: T) { self.0.error(message.into()) } /// Consume the next token if it is `kind`. pub(crate) fn eat(&mut self, kind: SyntaxKind) -> bool { if !self.at(kind) { return false; } self.bump(); true } /// Consume the next token if it is `kind` or emit an error /// otherwise. pub(crate) fn expect(&mut self, kind: SyntaxKind) -> bool { if self.eat(kind) { return true; } self.error(format!("expected {:?}", kind)); false } /// Create an error node and consume the next token. pub(crate) fn err_and_bump(&mut self, message: &str) { let m = self.start(); self.error(message); self.bump(); m.complete(self, ERROR); } } /// See `Parser::start`. pub(crate) struct Marker(u32); impl Marker { /// Finishes the syntax tree node and assigns `kind` to it. pub(crate) fn complete(self, p: &mut Parser, kind: SyntaxKind) -> CompletedMarker { let pos = self.0; ::std::mem::forget(self); p.0.complete(pos, kind); CompletedMarker(pos) } /// Abandons the syntax tree node. All its children /// are attached to its parent instead. pub(crate) fn abandon(self, p: &mut Parser) { let pos = self.0; ::std::mem::forget(self); p.0.abandon(pos); } } impl Drop for Marker { fn drop(&mut self) { if !::std::thread::panicking() { panic!("Marker must be either completed or abandoned"); } } } pub(crate) struct CompletedMarker(u32); impl CompletedMarker { /// This one is tricky :-) /// This method allows to create a new node which starts /// *before* the current one. That is, parser could start /// node `A`, then complete it, and then after parsing the /// whole `A`, decide that it should have started some node /// `B` before starting `A`. `precede` allows to do exactly /// that. See also docs about `forward_parent` in `Event::Start`. pub(crate) fn precede(self, p: &mut Parser) -> Marker { Marker(p.0.precede(self.0)) } }