//! Type inference for patterns. use std::iter::repeat; use std::sync::Arc; use hir_def::{ expr::{BindingAnnotation, Expr, Literal, Pat, PatId, RecordFieldPat}, path::Path, type_ref::Mutability, FieldId, }; use hir_expand::name::Name; use test_utils::mark; use super::{BindingMode, Expectation, InferenceContext}; use crate::{utils::variant_data, Substs, Ty, TypeCtor}; impl<'a> InferenceContext<'a> { fn infer_tuple_struct_pat( &mut self, path: Option<&Path>, subpats: &[PatId], expected: &Ty, default_bm: BindingMode, id: PatId, ) -> Ty { let (ty, def) = self.resolve_variant(path); let var_data = def.map(|it| variant_data(self.db.upcast(), it)); if let Some(variant) = def { self.write_variant_resolution(id.into(), variant); } self.unify(&ty, expected); let substs = ty.substs().unwrap_or_else(Substs::empty); let field_tys = def.map(|it| self.db.field_types(it)).unwrap_or_default(); for (i, &subpat) in subpats.iter().enumerate() { let expected_ty = var_data .as_ref() .and_then(|d| d.field(&Name::new_tuple_field(i))) .map_or(Ty::Unknown, |field| field_tys[field].clone().subst(&substs)); let expected_ty = self.normalize_associated_types_in(expected_ty); self.infer_pat(subpat, &expected_ty, default_bm); } ty } fn infer_record_pat( &mut self, path: Option<&Path>, subpats: &[RecordFieldPat], expected: &Ty, default_bm: BindingMode, id: PatId, ) -> Ty { let (ty, def) = self.resolve_variant(path); let var_data = def.map(|it| variant_data(self.db.upcast(), it)); if let Some(variant) = def { self.write_variant_resolution(id.into(), variant); } self.unify(&ty, expected); let substs = ty.substs().unwrap_or_else(Substs::empty); let field_tys = def.map(|it| self.db.field_types(it)).unwrap_or_default(); for subpat in subpats { let matching_field = var_data.as_ref().and_then(|it| it.field(&subpat.name)); if let Some(local_id) = matching_field { let field_def = FieldId { parent: def.unwrap(), local_id }; self.result.record_pat_field_resolutions.insert(subpat.pat, field_def); } let expected_ty = matching_field.map_or(Ty::Unknown, |field| field_tys[field].clone().subst(&substs)); let expected_ty = self.normalize_associated_types_in(expected_ty); self.infer_pat(subpat.pat, &expected_ty, default_bm); } ty } pub(super) fn infer_pat( &mut self, pat: PatId, mut expected: &Ty, mut default_bm: BindingMode, ) -> Ty { let body = Arc::clone(&self.body); // avoid borrow checker problem if is_non_ref_pat(&body, pat) { while let Some((inner, mutability)) = expected.as_reference() { expected = inner; default_bm = match default_bm { BindingMode::Move => BindingMode::Ref(mutability), BindingMode::Ref(Mutability::Shared) => BindingMode::Ref(Mutability::Shared), BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability), } } } else if let Pat::Ref { .. } = &body[pat] { mark::hit!(match_ergonomics_ref); // When you encounter a `&pat` pattern, reset to Move. // This is so that `w` is by value: `let (_, &w) = &(1, &2);` default_bm = BindingMode::Move; } // Lose mutability. let default_bm = default_bm; let expected = expected; let ty = match &body[pat] { Pat::Tuple { ref args, ellipsis } => { let expectations = match expected.as_tuple() { Some(parameters) => &*parameters.0, _ => &[], }; let (pre, post) = match ellipsis { &Some(idx) => args.split_at(idx), None => (&args[..], &[][..]), }; let uncovered_range = pre.len()..expectations.len().saturating_sub(post.len()); let mut expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown)); let mut infer_pat = |(&pat, ty)| self.infer_pat(pat, ty, default_bm); let mut inner_tys = Vec::with_capacity(expectations.len()); inner_tys.extend(pre.iter().zip(expectations_iter.by_ref()).map(&mut infer_pat)); inner_tys.extend(expectations_iter.by_ref().take(uncovered_range.len()).cloned()); inner_tys.extend(post.iter().zip(expectations_iter).map(infer_pat)); Ty::apply( TypeCtor::Tuple { cardinality: inner_tys.len() as u16 }, Substs(inner_tys.into()), ) } Pat::Or(ref pats) => { if let Some((first_pat, rest)) = pats.split_first() { let ty = self.infer_pat(*first_pat, expected, default_bm); for pat in rest { self.infer_pat(*pat, expected, default_bm); } ty } else { Ty::Unknown } } Pat::Ref { pat, mutability } => { let expectation = match expected.as_reference() { Some((inner_ty, exp_mut)) => { if *mutability != exp_mut { // FIXME: emit type error? } inner_ty } _ => &Ty::Unknown, }; let subty = self.infer_pat(*pat, expectation, default_bm); Ty::apply_one(TypeCtor::Ref(*mutability), subty) } Pat::TupleStruct { path: p, args: subpats, .. } => { self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm, pat) } Pat::Record { path: p, args: fields, ellipsis: _ } => { self.infer_record_pat(p.as_ref(), fields, expected, default_bm, pat) } Pat::Path(path) => { // FIXME use correct resolver for the surrounding expression let resolver = self.resolver.clone(); self.infer_path(&resolver, &path, pat.into()).unwrap_or(Ty::Unknown) } Pat::Bind { mode, name: _, subpat } => { let mode = if mode == &BindingAnnotation::Unannotated { default_bm } else { BindingMode::convert(*mode) }; let inner_ty = if let Some(subpat) = subpat { self.infer_pat(*subpat, expected, default_bm) } else { expected.clone() }; let inner_ty = self.insert_type_vars_shallow(inner_ty); let bound_ty = match mode { BindingMode::Ref(mutability) => { Ty::apply_one(TypeCtor::Ref(mutability), inner_ty.clone()) } BindingMode::Move => inner_ty.clone(), }; let bound_ty = self.resolve_ty_as_possible(bound_ty); self.write_pat_ty(pat, bound_ty); return inner_ty; } Pat::Slice { prefix, slice, suffix } => { let (container_ty, elem_ty) = match &expected { ty_app!(TypeCtor::Array, st) => (TypeCtor::Array, st.as_single().clone()), ty_app!(TypeCtor::Slice, st) => (TypeCtor::Slice, st.as_single().clone()), _ => (TypeCtor::Slice, Ty::Unknown), }; for pat_id in prefix.iter().chain(suffix) { self.infer_pat(*pat_id, &elem_ty, default_bm); } let pat_ty = Ty::apply_one(container_ty, elem_ty); if let Some(slice_pat_id) = slice { self.infer_pat(*slice_pat_id, &pat_ty, default_bm); } pat_ty } Pat::Wild => expected.clone(), Pat::Range { start, end } => { let start_ty = self.infer_expr(*start, &Expectation::has_type(expected.clone())); let end_ty = self.infer_expr(*end, &Expectation::has_type(start_ty)); end_ty } Pat::Lit(expr) => self.infer_expr(*expr, &Expectation::has_type(expected.clone())), Pat::Box { inner } => match self.resolve_boxed_box() { Some(box_adt) => { let inner_expected = match expected.as_adt() { Some((adt, substs)) if adt == box_adt => substs.as_single(), _ => &Ty::Unknown, }; let inner_ty = self.infer_pat(*inner, inner_expected, default_bm); Ty::apply_one(TypeCtor::Adt(box_adt), inner_ty) } None => Ty::Unknown, }, Pat::Missing => Ty::Unknown, }; // use a new type variable if we got Ty::Unknown here let ty = self.insert_type_vars_shallow(ty); if !self.unify(&ty, expected) { // FIXME record mismatch, we need to change the type of self.type_mismatches for that } let ty = self.resolve_ty_as_possible(ty); self.write_pat_ty(pat, ty.clone()); ty } } fn is_non_ref_pat(body: &hir_def::body::Body, pat: PatId) -> bool { match &body[pat] { Pat::Tuple { .. } | Pat::TupleStruct { .. } | Pat::Record { .. } | Pat::Range { .. } | Pat::Slice { .. } => true, Pat::Or(pats) => pats.iter().all(|p| is_non_ref_pat(body, *p)), // FIXME: Path/Lit might actually evaluate to ref, but inference is unimplemented. Pat::Path(..) => true, Pat::Lit(expr) => match body[*expr] { Expr::Literal(Literal::String(..)) => false, _ => true, }, Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Box { .. } | Pat::Missing => false, } }