//! Assorted functions shared by several assists. pub(crate) mod suggest_name; mod gen_trait_fn_body; use std::ops; use hir::{Adt, HasSource, Semantics}; use ide_db::{ helpers::{FamousDefs, SnippetCap}, path_transform::PathTransform, RootDatabase, }; use itertools::Itertools; use stdx::format_to; use syntax::{ ast::{ self, edit::{self, AstNodeEdit}, make, ArgListOwner, AttrsOwner, GenericParamsOwner, NameOwner, TypeBoundsOwner, }, ted, AstNode, Direction, SmolStr, SyntaxKind::*, SyntaxNode, TextSize, T, }; use crate::assist_context::{AssistBuilder, AssistContext}; pub(crate) use gen_trait_fn_body::gen_trait_fn_body; pub(crate) fn unwrap_trivial_block(block: ast::BlockExpr) -> ast::Expr { extract_trivial_expression(&block) .filter(|expr| !expr.syntax().text().contains_char('\n')) .unwrap_or_else(|| block.into()) } pub fn extract_trivial_expression(block: &ast::BlockExpr) -> Option { let has_anything_else = |thing: &SyntaxNode| -> bool { let mut non_trivial_children = block.syntax().children_with_tokens().filter(|it| match it.kind() { WHITESPACE | T!['{'] | T!['}'] => false, _ => it.as_node() != Some(thing), }); non_trivial_children.next().is_some() }; if let Some(expr) = block.tail_expr() { if has_anything_else(expr.syntax()) { return None; } return Some(expr); } // Unwrap `{ continue; }` let stmt = block.statements().next()?; if let ast::Stmt::ExprStmt(expr_stmt) = stmt { if has_anything_else(expr_stmt.syntax()) { return None; } let expr = expr_stmt.expr()?; if matches!(expr.syntax().kind(), CONTINUE_EXPR | BREAK_EXPR | RETURN_EXPR) { return Some(expr); } } None } /// This is a method with a heuristics to support test methods annotated with custom test annotations, such as /// `#[test_case(...)]`, `#[tokio::test]` and similar. /// Also a regular `#[test]` annotation is supported. /// /// It may produce false positives, for example, `#[wasm_bindgen_test]` requires a different command to run the test, /// but it's better than not to have the runnables for the tests at all. pub fn test_related_attribute(fn_def: &ast::Fn) -> Option { fn_def.attrs().find_map(|attr| { let path = attr.path()?; path.syntax().text().to_string().contains("test").then(|| attr) }) } #[derive(Copy, Clone, PartialEq)] pub enum DefaultMethods { Only, No, } pub fn filter_assoc_items( db: &RootDatabase, items: &[hir::AssocItem], default_methods: DefaultMethods, ) -> Vec { fn has_def_name(item: &ast::AssocItem) -> bool { match item { ast::AssocItem::Fn(def) => def.name(), ast::AssocItem::TypeAlias(def) => def.name(), ast::AssocItem::Const(def) => def.name(), ast::AssocItem::MacroCall(_) => None, } .is_some() } items .iter() // Note: This throws away items with no source. .filter_map(|i| { let item = match i { hir::AssocItem::Function(i) => ast::AssocItem::Fn(i.source(db)?.value), hir::AssocItem::TypeAlias(i) => ast::AssocItem::TypeAlias(i.source(db)?.value), hir::AssocItem::Const(i) => ast::AssocItem::Const(i.source(db)?.value), }; Some(item) }) .filter(has_def_name) .filter(|it| match it { ast::AssocItem::Fn(def) => matches!( (default_methods, def.body()), (DefaultMethods::Only, Some(_)) | (DefaultMethods::No, None) ), _ => default_methods == DefaultMethods::No, }) .collect::>() } pub fn add_trait_assoc_items_to_impl( sema: &hir::Semantics, items: Vec, trait_: hir::Trait, impl_: ast::Impl, target_scope: hir::SemanticsScope, ) -> (ast::Impl, ast::AssocItem) { let source_scope = sema.scope_for_def(trait_); let transform = PathTransform { subst: (trait_, impl_.clone()), source_scope: &source_scope, target_scope: &target_scope, }; let items = items.into_iter().map(|assoc_item| { let assoc_item = assoc_item.clone_for_update(); transform.apply(assoc_item.clone()); edit::remove_attrs_and_docs(&assoc_item).clone_subtree().clone_for_update() }); let res = impl_.clone_for_update(); let assoc_item_list = res.get_or_create_assoc_item_list(); let mut first_item = None; for item in items { first_item.get_or_insert_with(|| item.clone()); match &item { ast::AssocItem::Fn(fn_) if fn_.body().is_none() => { let body = make::block_expr(None, Some(make::ext::expr_todo())) .indent(edit::IndentLevel(1)); ted::replace(fn_.get_or_create_body().syntax(), body.clone_for_update().syntax()) } ast::AssocItem::TypeAlias(type_alias) => { if let Some(type_bound_list) = type_alias.type_bound_list() { type_bound_list.remove() } } _ => {} } assoc_item_list.add_item(item) } (res, first_item.unwrap()) } #[derive(Clone, Copy, Debug)] pub(crate) enum Cursor<'a> { Replace(&'a SyntaxNode), Before(&'a SyntaxNode), } impl<'a> Cursor<'a> { fn node(self) -> &'a SyntaxNode { match self { Cursor::Replace(node) | Cursor::Before(node) => node, } } } pub(crate) fn render_snippet(_cap: SnippetCap, node: &SyntaxNode, cursor: Cursor) -> String { assert!(cursor.node().ancestors().any(|it| it == *node)); let range = cursor.node().text_range() - node.text_range().start(); let range: ops::Range = range.into(); let mut placeholder = cursor.node().to_string(); escape(&mut placeholder); let tab_stop = match cursor { Cursor::Replace(placeholder) => format!("${{0:{}}}", placeholder), Cursor::Before(placeholder) => format!("$0{}", placeholder), }; let mut buf = node.to_string(); buf.replace_range(range, &tab_stop); return buf; fn escape(buf: &mut String) { stdx::replace(buf, '{', r"\{"); stdx::replace(buf, '}', r"\}"); stdx::replace(buf, '$', r"\$"); } } pub(crate) fn vis_offset(node: &SyntaxNode) -> TextSize { node.children_with_tokens() .find(|it| !matches!(it.kind(), WHITESPACE | COMMENT | ATTR)) .map(|it| it.text_range().start()) .unwrap_or_else(|| node.text_range().start()) } pub(crate) fn invert_boolean_expression( sema: &Semantics, expr: ast::Expr, ) -> ast::Expr { invert_special_case(sema, &expr).unwrap_or_else(|| make::expr_prefix(T![!], expr)) } fn invert_special_case(sema: &Semantics, expr: &ast::Expr) -> Option { match expr { ast::Expr::BinExpr(bin) => match bin.op_kind()? { ast::BinOp::NegatedEqualityTest => bin.replace_op(T![==]).map(|it| it.into()), ast::BinOp::EqualityTest => bin.replace_op(T![!=]).map(|it| it.into()), // Swap `<` with `>=`, `<=` with `>`, ... if operands `impl Ord` ast::BinOp::LesserTest if bin_impls_ord(sema, bin) => { bin.replace_op(T![>=]).map(|it| it.into()) } ast::BinOp::LesserEqualTest if bin_impls_ord(sema, bin) => { bin.replace_op(T![>]).map(|it| it.into()) } ast::BinOp::GreaterTest if bin_impls_ord(sema, bin) => { bin.replace_op(T![<=]).map(|it| it.into()) } ast::BinOp::GreaterEqualTest if bin_impls_ord(sema, bin) => { bin.replace_op(T![<]).map(|it| it.into()) } // Parenthesize other expressions before prefixing `!` _ => Some(make::expr_prefix(T![!], make::expr_paren(expr.clone()))), }, ast::Expr::MethodCallExpr(mce) => { let receiver = mce.receiver()?; let method = mce.name_ref()?; let arg_list = mce.arg_list()?; let method = match method.text().as_str() { "is_some" => "is_none", "is_none" => "is_some", "is_ok" => "is_err", "is_err" => "is_ok", _ => return None, }; Some(make::expr_method_call(receiver, make::name_ref(method), arg_list)) } ast::Expr::PrefixExpr(pe) if pe.op_kind()? == ast::PrefixOp::Not => { if let ast::Expr::ParenExpr(parexpr) = pe.expr()? { parexpr.expr() } else { pe.expr() } } ast::Expr::Literal(lit) => match lit.kind() { ast::LiteralKind::Bool(b) => match b { true => Some(ast::Expr::Literal(make::expr_literal("false"))), false => Some(ast::Expr::Literal(make::expr_literal("true"))), }, _ => None, }, _ => None, } } fn bin_impls_ord(sema: &Semantics, bin: &ast::BinExpr) -> bool { match ( bin.lhs().and_then(|lhs| sema.type_of_expr(&lhs)).map(hir::TypeInfo::adjusted), bin.rhs().and_then(|rhs| sema.type_of_expr(&rhs)).map(hir::TypeInfo::adjusted), ) { (Some(lhs_ty), Some(rhs_ty)) if lhs_ty == rhs_ty => { let krate = sema.scope(bin.syntax()).module().map(|it| it.krate()); let ord_trait = FamousDefs(sema, krate).core_cmp_Ord(); ord_trait.map_or(false, |ord_trait| { lhs_ty.autoderef(sema.db).any(|ty| ty.impls_trait(sema.db, ord_trait, &[])) }) } _ => false, } } pub(crate) fn next_prev() -> impl Iterator { [Direction::Next, Direction::Prev].iter().copied() } pub(crate) fn does_pat_match_variant(pat: &ast::Pat, var: &ast::Pat) -> bool { let first_node_text = |pat: &ast::Pat| pat.syntax().first_child().map(|node| node.text()); let pat_head = match pat { ast::Pat::IdentPat(bind_pat) => { if let Some(p) = bind_pat.pat() { first_node_text(&p) } else { return pat.syntax().text() == var.syntax().text(); } } pat => first_node_text(pat), }; let var_head = first_node_text(var); pat_head == var_head } // Uses a syntax-driven approach to find any impl blocks for the struct that // exist within the module/file // // Returns `None` if we've found an existing fn // // FIXME: change the new fn checking to a more semantic approach when that's more // viable (e.g. we process proc macros, etc) // FIXME: this partially overlaps with `find_impl_block_*` pub(crate) fn find_struct_impl( ctx: &AssistContext, strukt: &ast::Adt, name: &str, ) -> Option> { let db = ctx.db(); let module = strukt.syntax().ancestors().find(|node| { ast::Module::can_cast(node.kind()) || ast::SourceFile::can_cast(node.kind()) })?; let struct_def = match strukt { ast::Adt::Enum(e) => Adt::Enum(ctx.sema.to_def(e)?), ast::Adt::Struct(s) => Adt::Struct(ctx.sema.to_def(s)?), ast::Adt::Union(u) => Adt::Union(ctx.sema.to_def(u)?), }; let block = module.descendants().filter_map(ast::Impl::cast).find_map(|impl_blk| { let blk = ctx.sema.to_def(&impl_blk)?; // FIXME: handle e.g. `struct S; impl S {}` // (we currently use the wrong type parameter) // also we wouldn't want to use e.g. `impl S` let same_ty = match blk.self_ty(db).as_adt() { Some(def) => def == struct_def, None => false, }; let not_trait_impl = blk.trait_(db).is_none(); if !(same_ty && not_trait_impl) { None } else { Some(impl_blk) } }); if let Some(ref impl_blk) = block { if has_fn(impl_blk, name) { return None; } } Some(block) } fn has_fn(imp: &ast::Impl, rhs_name: &str) -> bool { if let Some(il) = imp.assoc_item_list() { for item in il.assoc_items() { if let ast::AssocItem::Fn(f) = item { if let Some(name) = f.name() { if name.text().eq_ignore_ascii_case(rhs_name) { return true; } } } } } false } /// Find the start of the `impl` block for the given `ast::Impl`. // // FIXME: this partially overlaps with `find_struct_impl` pub(crate) fn find_impl_block_start(impl_def: ast::Impl, buf: &mut String) -> Option { buf.push('\n'); let start = impl_def.assoc_item_list().and_then(|it| it.l_curly_token())?.text_range().end(); Some(start) } /// Find the end of the `impl` block for the given `ast::Impl`. // // FIXME: this partially overlaps with `find_struct_impl` pub(crate) fn find_impl_block_end(impl_def: ast::Impl, buf: &mut String) -> Option { buf.push('\n'); let end = impl_def .assoc_item_list() .and_then(|it| it.r_curly_token())? .prev_sibling_or_token()? .text_range() .end(); Some(end) } // Generates the surrounding `impl Type { }` including type and lifetime // parameters pub(crate) fn generate_impl_text(adt: &ast::Adt, code: &str) -> String { generate_impl_text_inner(adt, None, code) } // Generates the surrounding `impl for Type { }` including type // and lifetime parameters pub(crate) fn generate_trait_impl_text(adt: &ast::Adt, trait_text: &str, code: &str) -> String { generate_impl_text_inner(adt, Some(trait_text), code) } fn generate_impl_text_inner(adt: &ast::Adt, trait_text: Option<&str>, code: &str) -> String { let generic_params = adt.generic_param_list(); let mut buf = String::with_capacity(code.len()); buf.push_str("\n\n"); adt.attrs() .filter(|attr| attr.as_simple_call().map(|(name, _arg)| name == "cfg").unwrap_or(false)) .for_each(|attr| buf.push_str(format!("{}\n", attr.to_string()).as_str())); buf.push_str("impl"); if let Some(generic_params) = &generic_params { let lifetimes = generic_params.lifetime_params().map(|lt| format!("{}", lt.syntax())); let type_params = generic_params.type_params().map(|type_param| { let mut buf = String::new(); if let Some(it) = type_param.name() { format_to!(buf, "{}", it.syntax()); } if let Some(it) = type_param.colon_token() { format_to!(buf, "{} ", it); } if let Some(it) = type_param.type_bound_list() { format_to!(buf, "{}", it.syntax()); } buf }); let const_params = generic_params.const_params().map(|t| t.syntax().to_string()); let generics = lifetimes.chain(type_params).chain(const_params).format(", "); format_to!(buf, "<{}>", generics); } buf.push(' '); if let Some(trait_text) = trait_text { buf.push_str(trait_text); buf.push_str(" for "); } buf.push_str(&adt.name().unwrap().text()); if let Some(generic_params) = generic_params { let lifetime_params = generic_params .lifetime_params() .filter_map(|it| it.lifetime()) .map(|it| SmolStr::from(it.text())); let type_params = generic_params .type_params() .filter_map(|it| it.name()) .map(|it| SmolStr::from(it.text())); let const_params = generic_params .const_params() .filter_map(|it| it.name()) .map(|it| SmolStr::from(it.text())); format_to!(buf, "<{}>", lifetime_params.chain(type_params).chain(const_params).format(", ")) } match adt.where_clause() { Some(where_clause) => { format_to!(buf, "\n{}\n{{\n{}\n}}", where_clause, code); } None => { format_to!(buf, " {{\n{}\n}}", code); } } buf } pub(crate) fn add_method_to_adt( builder: &mut AssistBuilder, adt: &ast::Adt, impl_def: Option, method: &str, ) { let mut buf = String::with_capacity(method.len() + 2); if impl_def.is_some() { buf.push('\n'); } buf.push_str(method); let start_offset = impl_def .and_then(|impl_def| find_impl_block_end(impl_def, &mut buf)) .unwrap_or_else(|| { buf = generate_impl_text(adt, &buf); adt.syntax().text_range().end() }); builder.insert(start_offset, buf); } pub fn useless_type_special_case(field_name: &str, field_ty: &String) -> Option<(String, String)> { if field_ty.to_string() == "String" { cov_mark::hit!(useless_type_special_case); return Some(("&str".to_string(), format!("self.{}.as_str()", field_name))); } if let Some(arg) = ty_ctor(field_ty, "Vec") { return Some((format!("&[{}]", arg), format!("self.{}.as_slice()", field_name))); } if let Some(arg) = ty_ctor(field_ty, "Box") { return Some((format!("&{}", arg), format!("self.{}.as_ref()", field_name))); } if let Some(arg) = ty_ctor(field_ty, "Option") { return Some((format!("Option<&{}>", arg), format!("self.{}.as_ref()", field_name))); } None } // FIXME: This should rely on semantic info. fn ty_ctor(ty: &String, ctor: &str) -> Option { let res = ty.to_string().strip_prefix(ctor)?.strip_prefix('<')?.strip_suffix('>')?.to_string(); Some(res) } pub(crate) fn get_methods(items: &ast::AssocItemList) -> Vec { items .assoc_items() .flat_map(|i| match i { ast::AssocItem::Fn(f) => Some(f), _ => None, }) .filter(|f| f.name().is_some()) .collect() }