//! This module provides primitives for showing type and function parameter information when editing //! a call or use-site. use std::collections::BTreeSet; use either::Either; use hir::{AssocItem, GenericParam, HasAttrs, HirDisplay, Semantics, Trait}; use ide_db::{active_parameter::callable_for_node, base_db::FilePosition}; use stdx::format_to; use syntax::{ algo, ast::{self, HasArgList}, match_ast, AstNode, Direction, SyntaxToken, TextRange, TextSize, }; use crate::RootDatabase; /// Contains information about an item signature as seen from a use site. /// /// This includes the "active parameter", which is the parameter whose value is currently being /// edited. #[derive(Debug)] pub struct SignatureHelp { pub doc: Option, pub signature: String, pub active_parameter: Option, parameters: Vec, } impl SignatureHelp { pub fn parameter_labels(&self) -> impl Iterator + '_ { self.parameters.iter().map(move |&it| &self.signature[it]) } pub fn parameter_ranges(&self) -> &[TextRange] { &self.parameters } fn push_call_param(&mut self, param: &str) { self.push_param('(', param); } fn push_generic_param(&mut self, param: &str) { self.push_param('<', param); } fn push_param(&mut self, opening_delim: char, param: &str) { if !self.signature.ends_with(opening_delim) { self.signature.push_str(", "); } let start = TextSize::of(&self.signature); self.signature.push_str(param); let end = TextSize::of(&self.signature); self.parameters.push(TextRange::new(start, end)) } } /// Computes parameter information for the given position. pub(crate) fn signature_help(db: &RootDatabase, position: FilePosition) -> Option { let sema = Semantics::new(db); let file = sema.parse(position.file_id); let file = file.syntax(); let token = file .token_at_offset(position.offset) .left_biased() // if the cursor is sandwiched between two space tokens and the call is unclosed // this prevents us from leaving the CallExpression .and_then(|tok| algo::skip_trivia_token(tok, Direction::Prev))?; let token = sema.descend_into_macros_single(token); for node in token.parent_ancestors() { match_ast! { match node { ast::ArgList(arg_list) => { let cursor_outside = arg_list.r_paren_token().as_ref() == Some(&token); if cursor_outside { return None; } return signature_help_for_call(&sema, token); }, ast::GenericArgList(garg_list) => { let cursor_outside = garg_list.r_angle_token().as_ref() == Some(&token); if cursor_outside { return None; } return signature_help_for_generics(&sema, token); }, _ => (), } } } None } fn signature_help_for_call( sema: &Semantics, token: SyntaxToken, ) -> Option { // Find the calling expression and its NameRef let mut node = token.parent()?; let calling_node = loop { if let Some(callable) = ast::CallableExpr::cast(node.clone()) { if callable .arg_list() .map_or(false, |it| it.syntax().text_range().contains(token.text_range().start())) { break callable; } } // Stop at multi-line expressions, since the signature of the outer call is not very // helpful inside them. if let Some(expr) = ast::Expr::cast(node.clone()) { if expr.syntax().text().contains_char('\n') { return None; } } node = node.parent()?; }; let (callable, active_parameter) = callable_for_node(sema, &calling_node, &token)?; let mut res = SignatureHelp { doc: None, signature: String::new(), parameters: vec![], active_parameter }; let db = sema.db; let mut fn_params = None; match callable.kind() { hir::CallableKind::Function(func) => { res.doc = func.docs(db).map(|it| it.into()); format_to!(res.signature, "fn {}", func.name(db)); fn_params = Some(match callable.receiver_param(db) { Some(_self) => func.params_without_self(db), None => func.assoc_fn_params(db), }); } hir::CallableKind::TupleStruct(strukt) => { res.doc = strukt.docs(db).map(|it| it.into()); format_to!(res.signature, "struct {}", strukt.name(db)); } hir::CallableKind::TupleEnumVariant(variant) => { res.doc = variant.docs(db).map(|it| it.into()); format_to!( res.signature, "enum {}::{}", variant.parent_enum(db).name(db), variant.name(db) ); } hir::CallableKind::Closure | hir::CallableKind::FnPtr => (), } res.signature.push('('); { if let Some(self_param) = callable.receiver_param(db) { format_to!(res.signature, "{}", self_param) } let mut buf = String::new(); for (idx, (pat, ty)) in callable.params(db).into_iter().enumerate() { buf.clear(); if let Some(pat) = pat { match pat { Either::Left(_self) => format_to!(buf, "self: "), Either::Right(pat) => format_to!(buf, "{}: ", pat), } } // APITs (argument position `impl Trait`s) are inferred as {unknown} as the user is // in the middle of entering call arguments. // In that case, fall back to render definitions of the respective parameters. // This is overly conservative: we do not substitute known type vars // (see FIXME in tests::impl_trait) and falling back on any unknowns. match (ty.contains_unknown(), fn_params.as_deref()) { (true, Some(fn_params)) => format_to!(buf, "{}", fn_params[idx].ty().display(db)), _ => format_to!(buf, "{}", ty.display(db)), } res.push_call_param(&buf); } } res.signature.push(')'); let mut render = |ret_type: hir::Type| { if !ret_type.is_unit() { format_to!(res.signature, " -> {}", ret_type.display(db)); } }; match callable.kind() { hir::CallableKind::Function(func) if callable.return_type().contains_unknown() => { render(func.ret_type(db)) } hir::CallableKind::Function(_) | hir::CallableKind::Closure | hir::CallableKind::FnPtr => { render(callable.return_type()) } hir::CallableKind::TupleStruct(_) | hir::CallableKind::TupleEnumVariant(_) => {} } Some(res) } fn signature_help_for_generics( sema: &Semantics, token: SyntaxToken, ) -> Option { let parent = token.parent()?; let arg_list = parent .ancestors() .filter_map(ast::GenericArgList::cast) .find(|list| list.syntax().text_range().contains(token.text_range().start()))?; let mut active_parameter = arg_list .generic_args() .take_while(|arg| arg.syntax().text_range().end() <= token.text_range().start()) .count(); let first_arg_is_non_lifetime = arg_list .generic_args() .next() .map_or(false, |arg| !matches!(arg, ast::GenericArg::LifetimeArg(_))); let mut generics_def = if let Some(path) = arg_list.syntax().ancestors().find_map(ast::Path::cast) { let res = sema.resolve_path(&path)?; let generic_def: hir::GenericDef = match res { hir::PathResolution::Def(hir::ModuleDef::Adt(it)) => it.into(), hir::PathResolution::Def(hir::ModuleDef::Function(it)) => it.into(), hir::PathResolution::Def(hir::ModuleDef::Trait(it)) => it.into(), hir::PathResolution::Def(hir::ModuleDef::TypeAlias(it)) => it.into(), hir::PathResolution::Def(hir::ModuleDef::Variant(it)) => it.into(), hir::PathResolution::Def(hir::ModuleDef::BuiltinType(_)) | hir::PathResolution::Def(hir::ModuleDef::Const(_)) | hir::PathResolution::Def(hir::ModuleDef::Macro(_)) | hir::PathResolution::Def(hir::ModuleDef::Module(_)) | hir::PathResolution::Def(hir::ModuleDef::Static(_)) => return None, hir::PathResolution::BuiltinAttr(_) | hir::PathResolution::ToolModule(_) | hir::PathResolution::Local(_) | hir::PathResolution::TypeParam(_) | hir::PathResolution::ConstParam(_) | hir::PathResolution::SelfType(_) => return None, }; generic_def } else if let Some(method_call) = arg_list.syntax().parent().and_then(ast::MethodCallExpr::cast) { // recv.method::<$0>() let method = sema.resolve_method_call(&method_call)?; method.into() } else { return None; }; let mut res = SignatureHelp { doc: None, signature: String::new(), parameters: vec![], active_parameter: None, }; let db = sema.db; match generics_def { hir::GenericDef::Function(it) => { res.doc = it.docs(db).map(|it| it.into()); format_to!(res.signature, "fn {}", it.name(db)); } hir::GenericDef::Adt(hir::Adt::Enum(it)) => { res.doc = it.docs(db).map(|it| it.into()); format_to!(res.signature, "enum {}", it.name(db)); } hir::GenericDef::Adt(hir::Adt::Struct(it)) => { res.doc = it.docs(db).map(|it| it.into()); format_to!(res.signature, "struct {}", it.name(db)); } hir::GenericDef::Adt(hir::Adt::Union(it)) => { res.doc = it.docs(db).map(|it| it.into()); format_to!(res.signature, "union {}", it.name(db)); } hir::GenericDef::Trait(it) => { res.doc = it.docs(db).map(|it| it.into()); format_to!(res.signature, "trait {}", it.name(db)); } hir::GenericDef::TypeAlias(it) => { res.doc = it.docs(db).map(|it| it.into()); format_to!(res.signature, "type {}", it.name(db)); } hir::GenericDef::Variant(it) => { // In paths, generics of an enum can be specified *after* one of its variants. // eg. `None::` // We'll use the signature of the enum, but include the docs of the variant. res.doc = it.docs(db).map(|it| it.into()); let it = it.parent_enum(db); format_to!(res.signature, "enum {}", it.name(db)); generics_def = it.into(); } // These don't have generic args that can be specified hir::GenericDef::Impl(_) | hir::GenericDef::Const(_) => return None, } let params = generics_def.params(sema.db); let num_lifetime_params = params.iter().take_while(|param| matches!(param, GenericParam::LifetimeParam(_))).count(); if first_arg_is_non_lifetime { // Lifetime parameters were omitted. active_parameter += num_lifetime_params; } res.active_parameter = Some(active_parameter); res.signature.push('<'); let mut buf = String::new(); for param in params { if let hir::GenericParam::TypeParam(ty) = param { if ty.is_implicit(db) { continue; } } buf.clear(); format_to!(buf, "{}", param.display(db)); res.push_generic_param(&buf); } if let hir::GenericDef::Trait(tr) = generics_def { add_assoc_type_bindings(db, &mut res, tr, arg_list); } res.signature.push('>'); Some(res) } fn add_assoc_type_bindings( db: &RootDatabase, res: &mut SignatureHelp, tr: Trait, args: ast::GenericArgList, ) { if args.syntax().ancestors().find_map(ast::TypeBound::cast).is_none() { // Assoc type bindings are only valid in type bound position. return; } let present_bindings = args .generic_args() .filter_map(|arg| match arg { ast::GenericArg::AssocTypeArg(arg) => arg.name_ref().map(|n| n.to_string()), _ => None, }) .collect::>(); let mut buf = String::new(); for binding in &present_bindings { buf.clear(); format_to!(buf, "{} = …", binding); res.push_generic_param(&buf); } for item in tr.items_with_supertraits(db) { if let AssocItem::TypeAlias(ty) = item { let name = ty.name(db).to_smol_str(); if !present_bindings.contains(&*name) { buf.clear(); format_to!(buf, "{} = …", name); res.push_generic_param(&buf); } } } } #[cfg(test)] mod tests { use std::iter; use expect_test::{expect, Expect}; use ide_db::base_db::{fixture::ChangeFixture, FilePosition}; use stdx::format_to; use crate::RootDatabase; /// Creates analysis from a multi-file fixture, returns positions marked with $0. pub(crate) fn position(ra_fixture: &str) -> (RootDatabase, FilePosition) { let change_fixture = ChangeFixture::parse(ra_fixture); let mut database = RootDatabase::default(); database.apply_change(change_fixture.change); let (file_id, range_or_offset) = change_fixture.file_position.expect("expected a marker ($0)"); let offset = range_or_offset.expect_offset(); (database, FilePosition { file_id, offset }) } fn check(ra_fixture: &str, expect: Expect) { // Implicitly add `Sized` to avoid noisy `T: ?Sized` in the results. let fixture = format!( r#" #[lang = "sized"] trait Sized {{}} {ra_fixture} "# ); let (db, position) = position(&fixture); let sig_help = crate::signature_help::signature_help(&db, position); let actual = match sig_help { Some(sig_help) => { let mut rendered = String::new(); if let Some(docs) = &sig_help.doc { format_to!(rendered, "{}\n------\n", docs.as_str()); } format_to!(rendered, "{}\n", sig_help.signature); let mut offset = 0; for (i, range) in sig_help.parameter_ranges().iter().enumerate() { let is_active = sig_help.active_parameter == Some(i); let start = u32::from(range.start()); let gap = start.checked_sub(offset).unwrap_or_else(|| { panic!("parameter ranges out of order: {:?}", sig_help.parameter_ranges()) }); rendered.extend(iter::repeat(' ').take(gap as usize)); let param_text = &sig_help.signature[*range]; let width = param_text.chars().count(); // … let marker = if is_active { '^' } else { '-' }; rendered.extend(iter::repeat(marker).take(width)); offset += gap + u32::from(range.len()); } if !sig_help.parameter_ranges().is_empty() { format_to!(rendered, "\n"); } rendered } None => String::new(), }; expect.assert_eq(&actual); } #[test] fn test_fn_signature_two_args() { check( r#" fn foo(x: u32, y: u32) -> u32 {x + y} fn bar() { foo($03, ); } "#, expect![[r#" fn foo(x: u32, y: u32) -> u32 ^^^^^^ ------ "#]], ); check( r#" fn foo(x: u32, y: u32) -> u32 {x + y} fn bar() { foo(3$0, ); } "#, expect![[r#" fn foo(x: u32, y: u32) -> u32 ^^^^^^ ------ "#]], ); check( r#" fn foo(x: u32, y: u32) -> u32 {x + y} fn bar() { foo(3,$0 ); } "#, expect![[r#" fn foo(x: u32, y: u32) -> u32 ------ ^^^^^^ "#]], ); check( r#" fn foo(x: u32, y: u32) -> u32 {x + y} fn bar() { foo(3, $0); } "#, expect![[r#" fn foo(x: u32, y: u32) -> u32 ------ ^^^^^^ "#]], ); } #[test] fn test_fn_signature_two_args_empty() { check( r#" fn foo(x: u32, y: u32) -> u32 {x + y} fn bar() { foo($0); } "#, expect![[r#" fn foo(x: u32, y: u32) -> u32 ^^^^^^ ------ "#]], ); } #[test] fn test_fn_signature_two_args_first_generics() { check( r#" fn foo(x: T, y: U) -> u32 where T: Copy + Display, U: Debug { x + y } fn bar() { foo($03, ); } "#, expect![[r#" fn foo(x: i32, y: U) -> u32 ^^^^^^ ---- "#]], ); } #[test] fn test_fn_signature_no_params() { check( r#" fn foo() -> T where T: Copy + Display {} fn bar() { foo($0); } "#, expect![[r#" fn foo() -> T "#]], ); } #[test] fn test_fn_signature_for_impl() { check( r#" struct F; impl F { pub fn new() { } } fn bar() { let _ : F = F::new($0); } "#, expect![[r#" fn new() "#]], ); } #[test] fn test_fn_signature_for_method_self() { check( r#" struct S; impl S { pub fn do_it(&self) {} } fn bar() { let s: S = S; s.do_it($0); } "#, expect![[r#" fn do_it(&self) "#]], ); } #[test] fn test_fn_signature_for_method_with_arg() { check( r#" struct S; impl S { fn foo(&self, x: i32) {} } fn main() { S.foo($0); } "#, expect![[r#" fn foo(&self, x: i32) ^^^^^^ "#]], ); } #[test] fn test_fn_signature_for_generic_method() { check( r#" struct S(T); impl S { fn foo(&self, x: T) {} } fn main() { S(1u32).foo($0); } "#, expect![[r#" fn foo(&self, x: u32) ^^^^^^ "#]], ); } #[test] fn test_fn_signature_for_method_with_arg_as_assoc_fn() { check( r#" struct S; impl S { fn foo(&self, x: i32) {} } fn main() { S::foo($0); } "#, expect![[r#" fn foo(self: &S, x: i32) ^^^^^^^^ ------ "#]], ); } #[test] fn test_fn_signature_with_docs_simple() { check( r#" /// test // non-doc-comment fn foo(j: u32) -> u32 { j } fn bar() { let _ = foo($0); } "#, expect![[r#" test ------ fn foo(j: u32) -> u32 ^^^^^^ "#]], ); } #[test] fn test_fn_signature_with_docs() { check( r#" /// Adds one to the number given. /// /// # Examples /// /// ``` /// let five = 5; /// /// assert_eq!(6, my_crate::add_one(5)); /// ``` pub fn add_one(x: i32) -> i32 { x + 1 } pub fn do() { add_one($0 }"#, expect![[r##" Adds one to the number given. # Examples ``` let five = 5; assert_eq!(6, my_crate::add_one(5)); ``` ------ fn add_one(x: i32) -> i32 ^^^^^^ "##]], ); } #[test] fn test_fn_signature_with_docs_impl() { check( r#" struct addr; impl addr { /// Adds one to the number given. /// /// # Examples /// /// ``` /// let five = 5; /// /// assert_eq!(6, my_crate::add_one(5)); /// ``` pub fn add_one(x: i32) -> i32 { x + 1 } } pub fn do_it() { addr {}; addr::add_one($0); } "#, expect![[r##" Adds one to the number given. # Examples ``` let five = 5; assert_eq!(6, my_crate::add_one(5)); ``` ------ fn add_one(x: i32) -> i32 ^^^^^^ "##]], ); } #[test] fn test_fn_signature_with_docs_from_actix() { check( r#" trait Actor { /// Actor execution context type type Context; } trait WriteHandler where Self: Actor { /// Method is called when writer finishes. /// /// By default this method stops actor's `Context`. fn finished(&mut self, ctx: &mut Self::Context) {} } fn foo(mut r: impl WriteHandler<()>) { r.finished($0); } "#, expect![[r#" Method is called when writer finishes. By default this method stops actor's `Context`. ------ fn finished(&mut self, ctx: &mut as Actor>::Context) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ "#]], ); } #[test] fn call_info_bad_offset() { check( r#" fn foo(x: u32, y: u32) -> u32 {x + y} fn bar() { foo $0 (3, ); } "#, expect![[""]], ); } #[test] fn outside_of_arg_list() { check( r#" fn foo(a: u8) {} fn f() { foo(123)$0 } "#, expect![[]], ); check( r#" fn foo(a: u8) {} fn f() { foo::$0() } "#, expect![[]], ); } #[test] fn test_nested_method_in_lambda() { check( r#" struct Foo; impl Foo { fn bar(&self, _: u32) { } } fn bar(_: u32) { } fn main() { let foo = Foo; std::thread::spawn(move || foo.bar($0)); } "#, expect![[r#" fn bar(&self, _: u32) ^^^^^^ "#]], ); } #[test] fn works_for_tuple_structs() { check( r#" /// A cool tuple struct struct S(u32, i32); fn main() { let s = S(0, $0); } "#, expect![[r#" A cool tuple struct ------ struct S(u32, i32) --- ^^^ "#]], ); } #[test] fn generic_struct() { check( r#" struct S(T); fn main() { let s = S($0); } "#, expect![[r#" struct S({unknown}) ^^^^^^^^^ "#]], ); } #[test] fn works_for_enum_variants() { check( r#" enum E { /// A Variant A(i32), /// Another B, /// And C C { a: i32, b: i32 } } fn main() { let a = E::A($0); } "#, expect![[r#" A Variant ------ enum E::A(i32) ^^^ "#]], ); } #[test] fn cant_call_struct_record() { check( r#" struct S { x: u32, y: i32 } fn main() { let s = S($0); } "#, expect![[""]], ); } #[test] fn cant_call_enum_record() { check( r#" enum E { /// A Variant A(i32), /// Another B, /// And C C { a: i32, b: i32 } } fn main() { let a = E::C($0); } "#, expect![[""]], ); } #[test] fn fn_signature_for_call_in_macro() { check( r#" macro_rules! id { ($($tt:tt)*) => { $($tt)* } } fn foo() { } id! { fn bar() { foo($0); } } "#, expect![[r#" fn foo() "#]], ); } #[test] fn call_info_for_lambdas() { check( r#" struct S; fn foo(s: S) -> i32 { 92 } fn main() { (|s| foo(s))($0) } "#, expect![[r#" (s: S) -> i32 ^^^^ "#]], ) } #[test] fn call_info_for_fn_ptr() { check( r#" fn main(f: fn(i32, f64) -> char) { f(0, $0) } "#, expect![[r#" (i32, f64) -> char --- ^^^ "#]], ) } #[test] fn call_info_for_unclosed_call() { check( r#" fn foo(foo: u32, bar: u32) {} fn main() { foo($0 }"#, expect![[r#" fn foo(foo: u32, bar: u32) ^^^^^^^^ -------- "#]], ); // check with surrounding space check( r#" fn foo(foo: u32, bar: u32) {} fn main() { foo( $0 }"#, expect![[r#" fn foo(foo: u32, bar: u32) ^^^^^^^^ -------- "#]], ) } #[test] fn test_multiline_argument() { check( r#" fn callee(a: u8, b: u8) {} fn main() { callee(match 0 { 0 => 1,$0 }) }"#, expect![[r#""#]], ); check( r#" fn callee(a: u8, b: u8) {} fn main() { callee(match 0 { 0 => 1, },$0) }"#, expect![[r#" fn callee(a: u8, b: u8) ----- ^^^^^ "#]], ); check( r#" fn callee(a: u8, b: u8) {} fn main() { callee($0match 0 { 0 => 1, }) }"#, expect![[r#" fn callee(a: u8, b: u8) ^^^^^ ----- "#]], ); } #[test] fn test_generics_simple() { check( r#" /// Option docs. enum Option { Some(T), None, } fn f() { let opt: Option<$0 } "#, expect![[r#" Option docs. ------ enum Option ^ "#]], ); } #[test] fn test_generics_on_variant() { check( r#" /// Option docs. enum Option { /// Some docs. Some(T), /// None docs. None, } use Option::*; fn f() { None::<$0 } "#, expect![[r#" None docs. ------ enum Option ^ "#]], ); } #[test] fn test_lots_of_generics() { check( r#" trait Tr {} struct S(T); impl S { fn f(g: G, h: impl Tr) where G: Tr<()> {} } fn f() { S::::f::<(), $0 } "#, expect![[r#" fn f, H> --------- ^ "#]], ); } #[test] fn test_generics_in_trait_ufcs() { check( r#" trait Tr { fn f() {} } struct S; impl Tr for S {} fn f() { ::f::<$0 } "#, expect![[r#" fn f ^^^^^ - "#]], ); } #[test] fn test_generics_in_method_call() { check( r#" struct S; impl S { fn f(&self) {} } fn f() { S.f::<$0 } "#, expect![[r#" fn f ^ "#]], ); } #[test] fn test_generic_param_in_method_call() { check( r#" struct Foo; impl Foo { fn test(&mut self, val: V) {} } fn sup() { Foo.test($0) } "#, expect![[r#" fn test(&mut self, val: V) ^^^^^^ "#]], ); } #[test] fn test_generic_kinds() { check( r#" fn callee<'a, const A: u8, T, const C: u8>() {} fn f() { callee::<'static, $0 } "#, expect![[r#" fn callee<'a, const A: u8, T, const C: u8> -- ^^^^^^^^^^^ - ----------- "#]], ); check( r#" fn callee<'a, const A: u8, T, const C: u8>() {} fn f() { callee:: -- ^^^^^^^^^^^ - ----------- "#]], ); } #[test] fn test_trait_assoc_types() { check( r#" trait Trait<'a, T> { type Assoc; } fn f() -> impl Trait<(), $0 "#, expect![[r#" trait Trait<'a, T, Assoc = …> -- - ^^^^^^^^^ "#]], ); check( r#" trait Iterator { type Item; } fn f() -> impl Iterator<$0 "#, expect![[r#" trait Iterator ^^^^^^^^ "#]], ); check( r#" trait Iterator { type Item; } fn f() -> impl Iterator ^^^^^^^^ "#]], ); check( r#" trait Tr { type A; type B; } fn f() -> impl Tr<$0 "#, expect![[r#" trait Tr ^^^^^ ----- "#]], ); check( r#" trait Tr { type A; type B; } fn f() -> impl Tr ^^^^^ ----- "#]], ); check( r#" trait Tr { type A; type B; } fn f() -> impl Tr ^^^^^ ----- "#]], ); check( r#" trait Tr { type A; type B; } fn f() -> impl Tr ----- ^^^^^ "#]], ); } #[test] fn test_supertrait_assoc() { check( r#" trait Super { type SuperTy; } trait Sub: Super + Super { type SubTy; } fn f() -> impl Sub<$0 "#, expect![[r#" trait Sub ^^^^^^^^^ ----------- "#]], ); } #[test] fn no_assoc_types_outside_type_bounds() { check( r#" trait Tr { type Assoc; } impl Tr<$0 "#, expect![[r#" trait Tr ^ "#]], ); } #[test] fn impl_trait() { // FIXME: Substitute type vars in impl trait (`U` -> `i8`) check( r#" trait Trait {} struct Wrap(T); fn foo(x: Wrap>) {} fn f() { foo::($0) } "#, expect![[r#" fn foo(x: Wrap>) ^^^^^^^^^^^^^^^^^^^^^^ "#]], ); } #[test] fn fully_qualified_syntax() { check( r#" fn f() { trait A { fn foo(&self, other: Self); } A::foo(&self$0, other); } "#, expect![[r#" fn foo(self: &Self, other: Self) ^^^^^^^^^^^ ----------- "#]], ); } }