//! Assorted functions shared by several assists. pub(crate) mod insert_use; use std::{iter, ops}; use hir::{Adt, Crate, Enum, ScopeDef, Semantics, Trait, Type}; use ide_db::RootDatabase; use itertools::Itertools; use rustc_hash::FxHashSet; use syntax::{ ast::{self, make, ArgListOwner, NameOwner}, AstNode, Direction, SyntaxKind::*, SyntaxNode, TextSize, T, }; use crate::assist_config::SnippetCap; pub use insert_use::MergeBehaviour; pub(crate) use insert_use::{insert_use, ImportScope}; pub fn mod_path_to_ast(path: &hir::ModPath) -> ast::Path { let mut segments = Vec::new(); let mut is_abs = false; match path.kind { hir::PathKind::Plain => {} hir::PathKind::Super(0) => segments.push(make::path_segment_self()), hir::PathKind::Super(n) => segments.extend((0..n).map(|_| make::path_segment_super())), hir::PathKind::DollarCrate(_) | hir::PathKind::Crate => { segments.push(make::path_segment_crate()) } hir::PathKind::Abs => is_abs = true, } segments.extend( path.segments .iter() .map(|segment| make::path_segment(make::name_ref(&segment.to_string()))), ); make::path_from_segments(segments, is_abs) } pub(crate) fn unwrap_trivial_block(block: ast::BlockExpr) -> ast::Expr { extract_trivial_expression(&block) .filter(|expr| !expr.syntax().text().contains_char('\n')) .unwrap_or_else(|| block.into()) } pub fn extract_trivial_expression(block: &ast::BlockExpr) -> Option { let has_anything_else = |thing: &SyntaxNode| -> bool { let mut non_trivial_children = block.syntax().children_with_tokens().filter(|it| match it.kind() { WHITESPACE | T!['{'] | T!['}'] => false, _ => it.as_node() != Some(thing), }); non_trivial_children.next().is_some() }; if let Some(expr) = block.expr() { if has_anything_else(expr.syntax()) { return None; } return Some(expr); } // Unwrap `{ continue; }` let (stmt,) = block.statements().next_tuple()?; if let ast::Stmt::ExprStmt(expr_stmt) = stmt { if has_anything_else(expr_stmt.syntax()) { return None; } let expr = expr_stmt.expr()?; match expr.syntax().kind() { CONTINUE_EXPR | BREAK_EXPR | RETURN_EXPR => return Some(expr), _ => (), } } None } #[derive(Clone, Copy, Debug)] pub(crate) enum Cursor<'a> { Replace(&'a SyntaxNode), Before(&'a SyntaxNode), } impl<'a> Cursor<'a> { fn node(self) -> &'a SyntaxNode { match self { Cursor::Replace(node) | Cursor::Before(node) => node, } } } pub(crate) fn render_snippet(_cap: SnippetCap, node: &SyntaxNode, cursor: Cursor) -> String { assert!(cursor.node().ancestors().any(|it| it == *node)); let range = cursor.node().text_range() - node.text_range().start(); let range: ops::Range = range.into(); let mut placeholder = cursor.node().to_string(); escape(&mut placeholder); let tab_stop = match cursor { Cursor::Replace(placeholder) => format!("${{0:{}}}", placeholder), Cursor::Before(placeholder) => format!("$0{}", placeholder), }; let mut buf = node.to_string(); buf.replace_range(range, &tab_stop); return buf; fn escape(buf: &mut String) { stdx::replace(buf, '{', r"\{"); stdx::replace(buf, '}', r"\}"); stdx::replace(buf, '$', r"\$"); } } pub fn get_missing_assoc_items( sema: &Semantics, impl_def: &ast::Impl, ) -> Vec { // Names must be unique between constants and functions. However, type aliases // may share the same name as a function or constant. let mut impl_fns_consts = FxHashSet::default(); let mut impl_type = FxHashSet::default(); if let Some(item_list) = impl_def.assoc_item_list() { for item in item_list.assoc_items() { match item { ast::AssocItem::Fn(f) => { if let Some(n) = f.name() { impl_fns_consts.insert(n.syntax().to_string()); } } ast::AssocItem::TypeAlias(t) => { if let Some(n) = t.name() { impl_type.insert(n.syntax().to_string()); } } ast::AssocItem::Const(c) => { if let Some(n) = c.name() { impl_fns_consts.insert(n.syntax().to_string()); } } ast::AssocItem::MacroCall(_) => (), } } } resolve_target_trait(sema, impl_def).map_or(vec![], |target_trait| { target_trait .items(sema.db) .iter() .filter(|i| match i { hir::AssocItem::Function(f) => { !impl_fns_consts.contains(&f.name(sema.db).to_string()) } hir::AssocItem::TypeAlias(t) => !impl_type.contains(&t.name(sema.db).to_string()), hir::AssocItem::Const(c) => c .name(sema.db) .map(|n| !impl_fns_consts.contains(&n.to_string())) .unwrap_or_default(), }) .cloned() .collect() }) } pub(crate) fn resolve_target_trait( sema: &Semantics, impl_def: &ast::Impl, ) -> Option { let ast_path = impl_def.trait_().map(|it| it.syntax().clone()).and_then(ast::PathType::cast)?.path()?; match sema.resolve_path(&ast_path) { Some(hir::PathResolution::Def(hir::ModuleDef::Trait(def))) => Some(def), _ => None, } } pub(crate) fn vis_offset(node: &SyntaxNode) -> TextSize { node.children_with_tokens() .find(|it| !matches!(it.kind(), WHITESPACE | COMMENT | ATTR)) .map(|it| it.text_range().start()) .unwrap_or_else(|| node.text_range().start()) } pub(crate) fn invert_boolean_expression(expr: ast::Expr) -> ast::Expr { if let Some(expr) = invert_special_case(&expr) { return expr; } make::expr_prefix(T![!], expr) } fn invert_special_case(expr: &ast::Expr) -> Option { match expr { ast::Expr::BinExpr(bin) => match bin.op_kind()? { ast::BinOp::NegatedEqualityTest => bin.replace_op(T![==]).map(|it| it.into()), ast::BinOp::EqualityTest => bin.replace_op(T![!=]).map(|it| it.into()), _ => None, }, ast::Expr::MethodCallExpr(mce) => { let receiver = mce.receiver()?; let method = mce.name_ref()?; let arg_list = mce.arg_list()?; let method = match method.text().as_str() { "is_some" => "is_none", "is_none" => "is_some", "is_ok" => "is_err", "is_err" => "is_ok", _ => return None, }; Some(make::expr_method_call(receiver, method, arg_list)) } ast::Expr::PrefixExpr(pe) if pe.op_kind()? == ast::PrefixOp::Not => pe.expr(), // FIXME: // ast::Expr::Literal(true | false ) _ => None, } } #[derive(Clone, Copy)] pub enum TryEnum { Result, Option, } impl TryEnum { const ALL: [TryEnum; 2] = [TryEnum::Option, TryEnum::Result]; pub fn from_ty(sema: &Semantics, ty: &Type) -> Option { let enum_ = match ty.as_adt() { Some(Adt::Enum(it)) => it, _ => return None, }; TryEnum::ALL.iter().find_map(|&var| { if &enum_.name(sema.db).to_string() == var.type_name() { return Some(var); } None }) } pub(crate) fn happy_case(self) -> &'static str { match self { TryEnum::Result => "Ok", TryEnum::Option => "Some", } } pub(crate) fn sad_pattern(self) -> ast::Pat { match self { TryEnum::Result => make::tuple_struct_pat( make::path_unqualified(make::path_segment(make::name_ref("Err"))), iter::once(make::wildcard_pat().into()), ) .into(), TryEnum::Option => make::ident_pat(make::name("None")).into(), } } fn type_name(self) -> &'static str { match self { TryEnum::Result => "Result", TryEnum::Option => "Option", } } } /// Helps with finding well-know things inside the standard library. This is /// somewhat similar to the known paths infra inside hir, but it different; We /// want to make sure that IDE specific paths don't become interesting inside /// the compiler itself as well. pub struct FamousDefs<'a, 'b>(pub &'a Semantics<'b, RootDatabase>, pub Crate); #[allow(non_snake_case)] impl FamousDefs<'_, '_> { pub const FIXTURE: &'static str = r#"//- /libcore.rs crate:core pub mod convert { pub trait From { fn from(t: T) -> Self; } } pub mod iter { pub use self::traits::{collect::IntoIterator, iterator::Iterator}; mod traits { pub(crate) mod iterator { use crate::option::Option; pub trait Iterator { type Item; fn next(&mut self) -> Option; fn by_ref(&mut self) -> &mut Self { self } fn take(self, n: usize) -> crate::iter::Take { crate::iter::Take { inner: self } } } impl Iterator for &mut I { type Item = I::Item; fn next(&mut self) -> Option { (**self).next() } } } pub(crate) mod collect { pub trait IntoIterator { type Item; } } } pub use self::sources::*; pub(crate) mod sources { use super::Iterator; use crate::option::Option::{self, *}; pub struct Repeat { element: A, } pub fn repeat(elt: T) -> Repeat { Repeat { element: elt } } impl Iterator for Repeat { type Item = A; fn next(&mut self) -> Option { None } } } pub use self::adapters::*; pub(crate) mod adapters { use super::Iterator; use crate::option::Option::{self, *}; pub struct Take { pub(crate) inner: I } impl Iterator for Take where I: Iterator { type Item = ::Item; fn next(&mut self) -> Option<::Item> { None } } } } pub mod option { pub enum Option { None, Some(T)} } pub mod prelude { pub use crate::{convert::From, iter::{IntoIterator, Iterator}, option::Option::{self, *}}; } #[prelude_import] pub use prelude::*; "#; pub(crate) fn core_convert_From(&self) -> Option { self.find_trait("core:convert:From") } pub(crate) fn core_option_Option(&self) -> Option { self.find_enum("core:option:Option") } pub fn core_iter_Iterator(&self) -> Option { self.find_trait("core:iter:traits:iterator:Iterator") } fn find_trait(&self, path: &str) -> Option { match self.find_def(path)? { hir::ScopeDef::ModuleDef(hir::ModuleDef::Trait(it)) => Some(it), _ => None, } } fn find_enum(&self, path: &str) -> Option { match self.find_def(path)? { hir::ScopeDef::ModuleDef(hir::ModuleDef::Adt(hir::Adt::Enum(it))) => Some(it), _ => None, } } fn find_def(&self, path: &str) -> Option { let db = self.0.db; let mut path = path.split(':'); let trait_ = path.next_back()?; let std_crate = path.next()?; let std_crate = if self .1 .declaration_name(db) .map(|name| name.to_string() == std_crate) .unwrap_or(false) { self.1 } else { self.1.dependencies(db).into_iter().find(|dep| dep.name.to_string() == std_crate)?.krate }; let mut module = std_crate.root_module(db); for segment in path { module = module.children(db).find_map(|child| { let name = child.name(db)?; if name.to_string() == segment { Some(child) } else { None } })?; } let def = module.scope(db, None).into_iter().find(|(name, _def)| name.to_string() == trait_)?.1; Some(def) } } pub(crate) fn next_prev() -> impl Iterator { [Direction::Next, Direction::Prev].iter().copied() }