use std::{ marker::PhantomData, hash::Hash, }; use ra_db::{LocationIntener, FileId}; use ra_syntax::{TreeArc, SyntaxNode, SourceFile, AstNode, ast}; use ra_arena::{Arena, RawId, ArenaId, impl_arena_id}; use crate::{ HirDatabase, Def, Module, Trait, Type, }; #[derive(Debug, Default)] pub struct HirInterner { defs: LocationIntener, macros: LocationIntener, fns: LocationIntener, FunctionId>, structs: LocationIntener, StructId>, enums: LocationIntener, EnumId>, enum_variants: LocationIntener, EnumVariantId>, consts: LocationIntener, ConstId>, statics: LocationIntener, StaticId>, } impl HirInterner { pub fn len(&self) -> usize { self.defs.len() + self.macros.len() } } /// hir makes heavy use of ids: integer (u32) handlers to various things. You /// can think of id as a pointer (but without a lifetime) or a file descriptor /// (but for hir objects). /// /// This module defines a bunch of ids we are using. The most important ones are /// probably `HirFileId` and `DefId`. /// Input to the analyzer is a set of files, where each file is indentified by /// `FileId` and contains source code. However, another source of source code in /// Rust are macros: each macro can be thought of as producing a "temporary /// file". To assign an id to such a file, we use the id of the macro call that /// produced the file. So, a `HirFileId` is either a `FileId` (source code /// written by user), or a `MacroCallId` (source code produced by macro). /// /// What is a `MacroCallId`? Simplifying, it's a `HirFileId` of a file containin /// the call plus the offset of the macro call in the file. Note that this is a /// recursive definition! However, the size_of of `HirFileId` is finite /// (because everything bottoms out at the real `FileId`) and small /// (`MacroCallId` uses the location interner). #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct HirFileId(HirFileIdRepr); impl HirFileId { /// For macro-expansion files, returns the file original source file the /// expansionoriginated from. pub fn original_file(self, db: &impl HirDatabase) -> FileId { match self.0 { HirFileIdRepr::File(file_id) => file_id, HirFileIdRepr::Macro(macro_call_id) => { let loc = macro_call_id.loc(db); loc.source_item_id.file_id.original_file(db) } } } pub(crate) fn as_original_file(self) -> FileId { match self.0 { HirFileIdRepr::File(file_id) => file_id, HirFileIdRepr::Macro(_r) => panic!("macro generated file: {:?}", self), } } pub(crate) fn as_macro_call_id(self) -> Option { match self.0 { HirFileIdRepr::Macro(it) => Some(it), _ => None, } } pub(crate) fn hir_source_file( db: &impl HirDatabase, file_id: HirFileId, ) -> TreeArc { match file_id.0 { HirFileIdRepr::File(file_id) => db.source_file(file_id), HirFileIdRepr::Macro(m) => { if let Some(exp) = db.expand_macro_invocation(m) { return exp.file(); } // returning an empty string looks fishy... SourceFile::parse("") } } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] enum HirFileIdRepr { File(FileId), Macro(MacroCallId), } impl From for HirFileId { fn from(file_id: FileId) -> HirFileId { HirFileId(HirFileIdRepr::File(file_id)) } } impl From for HirFileId { fn from(macro_call_id: MacroCallId) -> HirFileId { HirFileId(HirFileIdRepr::Macro(macro_call_id)) } } /// `MacroCallId` identifies a particular macro invocation, like /// `println!("Hello, {}", world)`. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct MacroCallId(RawId); impl_arena_id!(MacroCallId); #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub struct MacroCallLoc { pub(crate) module: Module, pub(crate) source_item_id: SourceItemId, } impl MacroCallId { pub(crate) fn loc(self, db: &impl AsRef) -> MacroCallLoc { db.as_ref().macros.id2loc(self) } } impl MacroCallLoc { #[allow(unused)] pub(crate) fn id(&self, db: &impl AsRef) -> MacroCallId { db.as_ref().macros.loc2id(&self) } } #[derive(Debug, PartialEq, Eq, Hash)] pub struct ItemLoc { pub(crate) module: Module, raw: SourceItemId, _ty: PhantomData, } impl Clone for ItemLoc { fn clone(&self) -> ItemLoc { ItemLoc { module: self.module, raw: self.raw, _ty: PhantomData, } } } #[derive(Clone, Copy)] pub(crate) struct LocationCtx { db: DB, module: Module, file_id: HirFileId, } impl<'a, DB: HirDatabase> LocationCtx<&'a DB> { pub(crate) fn new(db: &'a DB, module: Module, file_id: HirFileId) -> LocationCtx<&'a DB> { LocationCtx { db, module, file_id, } } pub(crate) fn to_def(self, ast: &N) -> DEF where N: AstNode + Eq + Hash, DEF: AstItemDef, { DEF::from_ast(self, ast) } } pub(crate) trait AstItemDef: ArenaId + Clone { fn interner(interner: &HirInterner) -> &LocationIntener, Self>; fn from_ast(ctx: LocationCtx<&impl HirDatabase>, ast: &N) -> Self { let items = ctx.db.file_items(ctx.file_id); let raw = SourceItemId { file_id: ctx.file_id, item_id: Some(items.id_of(ctx.file_id, ast.syntax())), }; let loc = ItemLoc { module: ctx.module, raw, _ty: PhantomData, }; Self::interner(ctx.db.as_ref()).loc2id(&loc) } fn source(self, db: &impl HirDatabase) -> (HirFileId, TreeArc) { let int = Self::interner(db.as_ref()); let loc = int.id2loc(self); let syntax = db.file_item(loc.raw); let ast = N::cast(&syntax) .unwrap_or_else(|| panic!("invalid ItemLoc: {:?}", loc.raw)) .to_owned(); (loc.raw.file_id, ast) } fn module(self, db: &impl HirDatabase) -> Module { let int = Self::interner(db.as_ref()); let loc = int.id2loc(self); loc.module } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct FunctionId(RawId); impl_arena_id!(FunctionId); impl AstItemDef for FunctionId { fn interner(interner: &HirInterner) -> &LocationIntener, Self> { &interner.fns } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct StructId(RawId); impl_arena_id!(StructId); impl AstItemDef for StructId { fn interner(interner: &HirInterner) -> &LocationIntener, Self> { &interner.structs } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct EnumId(RawId); impl_arena_id!(EnumId); impl AstItemDef for EnumId { fn interner(interner: &HirInterner) -> &LocationIntener, Self> { &interner.enums } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct EnumVariantId(RawId); impl_arena_id!(EnumVariantId); impl AstItemDef for EnumVariantId { fn interner(interner: &HirInterner) -> &LocationIntener, Self> { &interner.enum_variants } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct ConstId(RawId); impl_arena_id!(ConstId); impl AstItemDef for ConstId { fn interner(interner: &HirInterner) -> &LocationIntener, Self> { &interner.consts } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct StaticId(RawId); impl_arena_id!(StaticId); impl AstItemDef for StaticId { fn interner(interner: &HirInterner) -> &LocationIntener, Self> { &interner.statics } } /// Def's are a core concept of hir. A `Def` is an Item (function, module, etc) /// in a specific module. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct DefId(RawId); impl_arena_id!(DefId); #[derive(Clone, Debug, PartialEq, Eq, Hash)] pub struct DefLoc { pub(crate) kind: DefKind, pub(crate) module: Module, pub(crate) source_item_id: SourceItemId, } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub(crate) enum DefKind { Trait, Type, Item, // /// The constructor of a struct. E.g. if we have `struct Foo(usize)`, the // /// name `Foo` needs to resolve to different types depending on whether we // /// are in the types or values namespace: As a type, `Foo` of course refers // /// to the struct `Foo`; as a value, `Foo` is a callable type with signature // /// `(usize) -> Foo`. The cleanest approach to handle this seems to be to // /// have different defs in the two namespaces. // /// // /// rustc does the same; note that it even creates a struct constructor if // /// the struct isn't a tuple struct (see `CtorKind::Fictive` in rustc). // StructCtor, } impl DefId { pub(crate) fn loc(self, db: &impl AsRef) -> DefLoc { db.as_ref().defs.id2loc(self) } pub fn resolve(self, db: &impl HirDatabase) -> Def { let loc = self.loc(db); match loc.kind { DefKind::Trait => { let def = Trait::new(self); Def::Trait(def) } DefKind::Type => { let def = Type::new(self); Def::Type(def) } DefKind::Item => Def::Item, } } pub(crate) fn source(self, db: &impl HirDatabase) -> (HirFileId, TreeArc) { let loc = self.loc(db); let syntax = db.file_item(loc.source_item_id); (loc.source_item_id.file_id, syntax) } } impl DefLoc { pub(crate) fn id(&self, db: &impl AsRef) -> DefId { db.as_ref().defs.loc2id(&self) } } /// Identifier of item within a specific file. This is stable over reparses, so /// it's OK to use it as a salsa key/value. #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct SourceFileItemId(RawId); impl_arena_id!(SourceFileItemId); #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct SourceItemId { pub(crate) file_id: HirFileId, /// None for the whole file. pub(crate) item_id: Option, } /// Maps items' `SyntaxNode`s to `SourceFileItemId`s and back. #[derive(Debug, PartialEq, Eq)] pub struct SourceFileItems { file_id: HirFileId, arena: Arena>, } impl SourceFileItems { pub(crate) fn new(file_id: HirFileId, source_file: &SourceFile) -> SourceFileItems { let mut res = SourceFileItems { file_id, arena: Arena::default(), }; res.init(source_file); res } fn init(&mut self, source_file: &SourceFile) { // By walking the tree in bread-first order we make sure that parents // get lower ids then children. That is, addding a new child does not // change parent's id. This means that, say, adding a new function to a // trait does not chage ids of top-level items, which helps caching. bfs(source_file.syntax(), |it| { if let Some(enum_variant) = ast::EnumVariant::cast(it) { self.alloc(enum_variant.syntax().to_owned()); } else if let Some(module_item) = ast::ModuleItem::cast(it) { self.alloc(module_item.syntax().to_owned()); } else if let Some(macro_call) = ast::MacroCall::cast(it) { self.alloc(macro_call.syntax().to_owned()); } }) } fn alloc(&mut self, item: TreeArc) -> SourceFileItemId { self.arena.alloc(item) } pub(crate) fn id_of(&self, file_id: HirFileId, item: &SyntaxNode) -> SourceFileItemId { assert_eq!( self.file_id, file_id, "SourceFileItems: wrong file, expected {:?}, got {:?}", self.file_id, file_id ); self.id_of_unchecked(item) } pub(crate) fn id_of_unchecked(&self, item: &SyntaxNode) -> SourceFileItemId { if let Some((id, _)) = self.arena.iter().find(|(_id, i)| *i == item) { return id; } // This should not happen. Let's try to give a sensible diagnostics. if let Some((id, i)) = self.arena.iter().find(|(_id, i)| i.range() == item.range()) { // FIXME(#288): whyyy are we getting here? log::error!( "unequal syntax nodes with the same range:\n{:?}\n{:?}", item, i ); return id; } panic!( "Can't find {:?} in SourceFileItems:\n{:?}", item, self.arena.iter().map(|(_id, i)| i).collect::>(), ); } pub fn id_of_source_file(&self) -> SourceFileItemId { let (id, _syntax) = self.arena.iter().next().unwrap(); id } } impl std::ops::Index for SourceFileItems { type Output = SyntaxNode; fn index(&self, idx: SourceFileItemId) -> &SyntaxNode { &self.arena[idx] } } /// Walks the subtree in bfs order, calling `f` for each node. fn bfs(node: &SyntaxNode, mut f: impl FnMut(&SyntaxNode)) { let mut curr_layer = vec![node]; let mut next_layer = vec![]; while !curr_layer.is_empty() { curr_layer.drain(..).for_each(|node| { next_layer.extend(node.children()); f(node); }); std::mem::swap(&mut curr_layer, &mut next_layer); } }