//! Implementation of find-usages functionality. //! //! It is based on the standard ide trick: first, we run a fast text search to //! get a super-set of matches. Then, we we confirm each match using precise //! name resolution. use std::{convert::TryInto, mem}; use base_db::{FileId, FileRange, SourceDatabase, SourceDatabaseExt}; use hir::{ AsAssocItem, DefWithBody, HasAttrs, HasSource, InFile, ModuleDef, ModuleSource, Semantics, Visibility, }; use once_cell::unsync::Lazy; use rustc_hash::FxHashMap; use syntax::{ast, match_ast, AstNode, TextRange, TextSize}; use crate::{ defs::{Definition, NameClass, NameRefClass}, RootDatabase, }; #[derive(Debug, Default, Clone)] pub struct UsageSearchResult { pub references: FxHashMap>, } impl UsageSearchResult { pub fn is_empty(&self) -> bool { self.references.is_empty() } pub fn len(&self) -> usize { self.references.len() } pub fn iter(&self) -> impl Iterator + '_ { self.references.iter().map(|(file_id, refs)| (file_id, &**refs)) } pub fn file_ranges(&self) -> impl Iterator + '_ { self.references.iter().flat_map(|(&file_id, refs)| { refs.iter().map(move |&FileReference { range, .. }| FileRange { file_id, range }) }) } } impl IntoIterator for UsageSearchResult { type Item = (FileId, Vec); type IntoIter = > as IntoIterator>::IntoIter; fn into_iter(self) -> Self::IntoIter { self.references.into_iter() } } #[derive(Debug, Clone)] pub struct FileReference { pub range: TextRange, pub name: ast::NameLike, pub access: Option, } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum ReferenceAccess { Read, Write, } /// Generally, `search_scope` returns files that might contain references for the element. /// For `pub(crate)` things it's a crate, for `pub` things it's a crate and dependant crates. /// In some cases, the location of the references is known to within a `TextRange`, /// e.g. for things like local variables. #[derive(Clone, Debug)] pub struct SearchScope { entries: FxHashMap>, } impl SearchScope { fn new(entries: FxHashMap>) -> SearchScope { SearchScope { entries } } fn crate_graph(db: &RootDatabase) -> SearchScope { let mut entries = FxHashMap::default(); let graph = db.crate_graph(); for krate in graph.iter() { let root_file = graph[krate].root_file_id; let source_root_id = db.file_source_root(root_file); let source_root = db.source_root(source_root_id); entries.extend(source_root.iter().map(|id| (id, None))); } SearchScope { entries } } fn reverse_dependencies(db: &RootDatabase, of: hir::Crate) -> SearchScope { let mut entries = FxHashMap::default(); for rev_dep in of.transitive_reverse_dependencies(db) { let root_file = rev_dep.root_file(db); let source_root_id = db.file_source_root(root_file); let source_root = db.source_root(source_root_id); entries.extend(source_root.iter().map(|id| (id, None))); } SearchScope { entries } } fn krate(db: &RootDatabase, of: hir::Crate) -> SearchScope { let root_file = of.root_file(db); let source_root_id = db.file_source_root(root_file); let source_root = db.source_root(source_root_id); SearchScope { entries: source_root.iter().map(|id| (id, None)).collect::>(), } } fn module(db: &RootDatabase, module: hir::Module) -> SearchScope { let mut entries = FxHashMap::default(); let mut to_visit = vec![module]; let mut is_first = true; while let Some(module) = to_visit.pop() { let src = module.definition_source(db); let file_id = src.file_id.original_file(db); match src.value { ModuleSource::Module(m) => { if is_first { let range = Some(m.syntax().text_range()); entries.insert(file_id, range); } else { // We have already added the enclosing file to the search scope, // so do nothing. } } ModuleSource::BlockExpr(b) => { if is_first { let range = Some(b.syntax().text_range()); entries.insert(file_id, range); } else { // We have already added the enclosing file to the search scope, // so do nothing. } } ModuleSource::SourceFile(_) => { entries.insert(file_id, None); } }; is_first = false; to_visit.extend(module.children(db)); } SearchScope { entries } } pub fn empty() -> SearchScope { SearchScope::new(FxHashMap::default()) } pub fn single_file(file: FileId) -> SearchScope { SearchScope::new(std::iter::once((file, None)).collect()) } pub fn file_range(range: FileRange) -> SearchScope { SearchScope::new(std::iter::once((range.file_id, Some(range.range))).collect()) } pub fn files(files: &[FileId]) -> SearchScope { SearchScope::new(files.iter().map(|f| (*f, None)).collect()) } pub fn intersection(&self, other: &SearchScope) -> SearchScope { let (mut small, mut large) = (&self.entries, &other.entries); if small.len() > large.len() { mem::swap(&mut small, &mut large) } let res = small .iter() .filter_map(|(file_id, r1)| { let r2 = large.get(file_id)?; let r = intersect_ranges(*r1, *r2)?; Some((*file_id, r)) }) .collect(); return SearchScope::new(res); fn intersect_ranges( r1: Option, r2: Option, ) -> Option> { match (r1, r2) { (None, r) | (r, None) => Some(r), (Some(r1), Some(r2)) => { let r = r1.intersect(r2)?; Some(Some(r)) } } } } } impl IntoIterator for SearchScope { type Item = (FileId, Option); type IntoIter = std::collections::hash_map::IntoIter>; fn into_iter(self) -> Self::IntoIter { self.entries.into_iter() } } impl Definition { fn search_scope(&self, db: &RootDatabase) -> SearchScope { let _p = profile::span("search_scope"); if let Definition::ModuleDef(hir::ModuleDef::BuiltinType(_)) = self { return SearchScope::crate_graph(db); } // def is crate root // FIXME: We don't do searches for crates currently, as a crate does not actually have a single name if let &Definition::ModuleDef(hir::ModuleDef::Module(module)) = self { if module.crate_root(db) == module { return SearchScope::reverse_dependencies(db, module.krate()); } } let module = match self.module(db) { Some(it) => it, None => return SearchScope::empty(), }; let InFile { file_id, value: module_source } = module.definition_source(db); let file_id = file_id.original_file(db); if let Definition::Local(var) = self { let def = match var.parent(db) { DefWithBody::Function(f) => f.source(db).map(|src| src.syntax().cloned()), DefWithBody::Const(c) => c.source(db).map(|src| src.syntax().cloned()), DefWithBody::Static(s) => s.source(db).map(|src| src.syntax().cloned()), }; return match def { Some(def) => SearchScope::file_range(def.as_ref().original_file_range(db)), None => SearchScope::single_file(file_id), }; } if let Definition::SelfType(impl_) = self { return match impl_.source(db).map(|src| src.syntax().cloned()) { Some(def) => SearchScope::file_range(def.as_ref().original_file_range(db)), None => SearchScope::single_file(file_id), }; } if let Definition::GenericParam(hir::GenericParam::LifetimeParam(param)) = self { let def = match param.parent(db) { hir::GenericDef::Function(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Adt(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Trait(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::TypeAlias(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Impl(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Variant(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Const(it) => it.source(db).map(|src| src.syntax().cloned()), }; return match def { Some(def) => SearchScope::file_range(def.as_ref().original_file_range(db)), None => SearchScope::single_file(file_id), }; } if let Definition::Macro(macro_def) = self { return match macro_def.kind() { hir::MacroKind::Declarative => { if macro_def.attrs(db).by_key("macro_export").exists() { SearchScope::reverse_dependencies(db, module.krate()) } else { SearchScope::krate(db, module.krate()) } } hir::MacroKind::BuiltIn => SearchScope::crate_graph(db), // FIXME: We don't actually see derives in derive attributes as these do not // expand to something that references the derive macro in the output. // We could get around this by emitting dummy `use DeriveMacroPathHere as _;` items maybe? hir::MacroKind::Derive | hir::MacroKind::Attr | hir::MacroKind::ProcMacro => { SearchScope::reverse_dependencies(db, module.krate()) } }; } let vis = self.visibility(db); if let Some(Visibility::Public) = vis { return SearchScope::reverse_dependencies(db, module.krate()); } if let Some(Visibility::Module(module)) = vis { return SearchScope::module(db, module.into()); } let range = match module_source { ModuleSource::Module(m) => Some(m.syntax().text_range()), ModuleSource::BlockExpr(b) => Some(b.syntax().text_range()), ModuleSource::SourceFile(_) => None, }; match range { Some(range) => SearchScope::file_range(FileRange { file_id, range }), None => SearchScope::single_file(file_id), } } pub fn usages<'a>(self, sema: &'a Semantics) -> FindUsages<'a> { FindUsages { def: self, sema, scope: None, include_self_kw_refs: None, search_self_mod: false, } } } pub struct FindUsages<'a> { def: Definition, sema: &'a Semantics<'a, RootDatabase>, scope: Option, include_self_kw_refs: Option, search_self_mod: bool, } impl<'a> FindUsages<'a> { /// Enable searching for `Self` when the definition is a type or `self` for modules. pub fn include_self_refs(mut self) -> FindUsages<'a> { self.include_self_kw_refs = def_to_ty(self.sema, &self.def); self.search_self_mod = true; self } pub fn in_scope(self, scope: SearchScope) -> FindUsages<'a> { self.set_scope(Some(scope)) } pub fn set_scope(mut self, scope: Option) -> FindUsages<'a> { assert!(self.scope.is_none()); self.scope = scope; self } pub fn at_least_one(self) -> bool { let mut found = false; self.search(&mut |_, _| { found = true; true }); found } pub fn all(self) -> UsageSearchResult { let mut res = UsageSearchResult::default(); self.search(&mut |file_id, reference| { res.references.entry(file_id).or_default().push(reference); false }); res } fn search(self, sink: &mut dyn FnMut(FileId, FileReference) -> bool) { let _p = profile::span("FindUsages:search"); let sema = self.sema; let search_scope = { let base = self.def.search_scope(sema.db); match &self.scope { None => base, Some(scope) => base.intersection(scope), } }; let name = self.def.name(sema.db).or_else(|| { self.include_self_kw_refs.as_ref().and_then(|ty| { ty.as_adt() .map(|adt| adt.name(self.sema.db)) .or_else(|| ty.as_builtin().map(|builtin| builtin.name())) }) }); let name = match name { Some(name) => name.to_string(), None => return, }; let name = name.as_str(); for (file_id, search_range) in search_scope { let text = sema.db.file_text(file_id); let search_range = search_range.unwrap_or_else(|| TextRange::up_to(TextSize::of(text.as_str()))); let tree = Lazy::new(|| sema.parse(file_id).syntax().clone()); for (idx, _) in text.match_indices(name) { let offset: TextSize = idx.try_into().unwrap(); if !search_range.contains_inclusive(offset) { continue; } for name in sema.find_nodes_at_offset_with_descend(&tree, offset) { if match name { ast::NameLike::NameRef(name_ref) => self.found_name_ref(&name_ref, sink), ast::NameLike::Name(name) => self.found_name(&name, sink), ast::NameLike::Lifetime(lifetime) => self.found_lifetime(&lifetime, sink), } { return; } } } if let Some(self_ty) = &self.include_self_kw_refs { for (idx, _) in text.match_indices("Self") { let offset: TextSize = idx.try_into().unwrap(); if !search_range.contains_inclusive(offset) { continue; } for name_ref in sema.find_nodes_at_offset_with_descend(&tree, offset) { if self.found_self_ty_name_ref(self_ty, &name_ref, sink) { return; } } } } } // search for module `self` references in our module's definition source match self.def { Definition::ModuleDef(hir::ModuleDef::Module(module)) if self.search_self_mod => { let src = module.definition_source(sema.db); let file_id = src.file_id.original_file(sema.db); let (file_id, search_range) = match src.value { ModuleSource::Module(m) => (file_id, Some(m.syntax().text_range())), ModuleSource::BlockExpr(b) => (file_id, Some(b.syntax().text_range())), ModuleSource::SourceFile(_) => (file_id, None), }; let text = sema.db.file_text(file_id); let search_range = search_range.unwrap_or_else(|| TextRange::up_to(TextSize::of(text.as_str()))); let tree = Lazy::new(|| sema.parse(file_id).syntax().clone()); for (idx, _) in text.match_indices("self") { let offset: TextSize = idx.try_into().unwrap(); if !search_range.contains_inclusive(offset) { continue; } for name_ref in sema.find_nodes_at_offset_with_descend(&tree, offset) { if self.found_self_module_name_ref(&name_ref, sink) { return; } } } } _ => {} } } fn found_self_ty_name_ref( &self, self_ty: &hir::Type, name_ref: &ast::NameRef, sink: &mut dyn FnMut(FileId, FileReference) -> bool, ) -> bool { match NameRefClass::classify(self.sema, name_ref) { Some(NameRefClass::Definition(Definition::SelfType(impl_))) if impl_.self_ty(self.sema.db) == *self_ty => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: ast::NameLike::NameRef(name_ref.clone()), access: None, }; sink(file_id, reference) } _ => false, } } fn found_self_module_name_ref( &self, name_ref: &ast::NameRef, sink: &mut dyn FnMut(FileId, FileReference) -> bool, ) -> bool { match NameRefClass::classify(self.sema, name_ref) { Some(NameRefClass::Definition(def @ Definition::ModuleDef(_))) if def == self.def => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: ast::NameLike::NameRef(name_ref.clone()), access: None, }; sink(file_id, reference) } _ => false, } } fn found_lifetime( &self, lifetime: &ast::Lifetime, sink: &mut dyn FnMut(FileId, FileReference) -> bool, ) -> bool { match NameRefClass::classify_lifetime(self.sema, lifetime) { Some(NameRefClass::Definition(def)) if def == self.def => { let FileRange { file_id, range } = self.sema.original_range(lifetime.syntax()); let reference = FileReference { range, name: ast::NameLike::Lifetime(lifetime.clone()), access: None, }; sink(file_id, reference) } _ => false, } } fn found_name_ref( &self, name_ref: &ast::NameRef, sink: &mut dyn FnMut(FileId, FileReference) -> bool, ) -> bool { match NameRefClass::classify(self.sema, name_ref) { Some(NameRefClass::Definition(def)) if def == self.def => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: ast::NameLike::NameRef(name_ref.clone()), access: reference_access(&def, name_ref), }; sink(file_id, reference) } Some(NameRefClass::Definition(def)) if self.include_self_kw_refs.is_some() => { if self.include_self_kw_refs == def_to_ty(self.sema, &def) { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: ast::NameLike::NameRef(name_ref.clone()), access: reference_access(&def, name_ref), }; sink(file_id, reference) } else { false } } Some(NameRefClass::FieldShorthand { local_ref: local, field_ref: field }) => { let field = Definition::Field(field); let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let access = match self.def { Definition::Field(_) if field == self.def => reference_access(&field, name_ref), Definition::Local(l) if local == l => { reference_access(&Definition::Local(local), name_ref) } _ => return false, }; let reference = FileReference { range, name: ast::NameLike::NameRef(name_ref.clone()), access }; sink(file_id, reference) } _ => false, } } fn found_name( &self, name: &ast::Name, sink: &mut dyn FnMut(FileId, FileReference) -> bool, ) -> bool { match NameClass::classify(self.sema, name) { Some(NameClass::PatFieldShorthand { local_def: _, field_ref }) if matches!( self.def, Definition::Field(_) if Definition::Field(field_ref) == self.def ) => { let FileRange { file_id, range } = self.sema.original_range(name.syntax()); let reference = FileReference { range, name: ast::NameLike::Name(name.clone()), // FIXME: mutable patterns should have `Write` access access: Some(ReferenceAccess::Read), }; sink(file_id, reference) } Some(NameClass::ConstReference(def)) if self.def == def => { let FileRange { file_id, range } = self.sema.original_range(name.syntax()); let reference = FileReference { range, name: ast::NameLike::Name(name.clone()), access: None }; sink(file_id, reference) } // Resolve trait impl function definitions to the trait definition's version if self.def is the trait definition's Some(NameClass::Definition(Definition::ModuleDef(mod_def))) => { /* poor man's try block */ (|| { let this = match self.def { Definition::ModuleDef(this) if this != mod_def => this, _ => return None, }; let this_trait = this .as_assoc_item(self.sema.db)? .containing_trait_or_trait_impl(self.sema.db)?; let trait_ = mod_def .as_assoc_item(self.sema.db)? .containing_trait_or_trait_impl(self.sema.db)?; (trait_ == this_trait && self.def.name(self.sema.db) == mod_def.name(self.sema.db)) .then(|| { let FileRange { file_id, range } = self.sema.original_range(name.syntax()); let reference = FileReference { range, name: ast::NameLike::Name(name.clone()), access: None, }; sink(file_id, reference) }) })() .unwrap_or(false) } _ => false, } } } fn def_to_ty(sema: &Semantics, def: &Definition) -> Option { match def { Definition::ModuleDef(def) => match def { ModuleDef::Adt(adt) => Some(adt.ty(sema.db)), ModuleDef::TypeAlias(it) => Some(it.ty(sema.db)), ModuleDef::BuiltinType(it) => { let graph = sema.db.crate_graph(); let krate = graph.iter().next()?; let root_file = graph[krate].root_file_id; let module = sema.to_module_def(root_file)?; Some(it.ty(sema.db, module)) } _ => None, }, Definition::SelfType(it) => Some(it.self_ty(sema.db)), _ => None, } } fn reference_access(def: &Definition, name_ref: &ast::NameRef) -> Option { // Only Locals and Fields have accesses for now. if !matches!(def, Definition::Local(_) | Definition::Field(_)) { return None; } let mode = name_ref.syntax().ancestors().find_map(|node| { match_ast! { match (node) { ast::BinExpr(expr) => { if matches!(expr.op_kind()?, ast::BinaryOp::Assignment { .. }) { // If the variable or field ends on the LHS's end then it's a Write (covers fields and locals). // FIXME: This is not terribly accurate. if let Some(lhs) = expr.lhs() { if lhs.syntax().text_range().end() == name_ref.syntax().text_range().end() { return Some(ReferenceAccess::Write); } } } Some(ReferenceAccess::Read) }, _ => None } } }); // Default Locals and Fields to read mode.or(Some(ReferenceAccess::Read)) }