//! Compute the binary representation of a type use std::fmt; use base_db::ra_salsa::Cycle; use chalk_ir::{AdtId, FloatTy, IntTy, TyKind, UintTy}; use hir_def::{ layout::{ BackendRepr, FieldsShape, Float, Integer, LayoutCalculator, LayoutCalculatorError, LayoutData, Primitive, ReprOptions, Scalar, Size, StructKind, TargetDataLayout, WrappingRange, }, LocalFieldId, StructId, }; use la_arena::{Idx, RawIdx}; use rustc_abi::AddressSpace; use rustc_index::{IndexSlice, IndexVec}; use triomphe::Arc; use crate::{ consteval::try_const_usize, db::{HirDatabase, InternedClosure}, infer::normalize, layout::adt::struct_variant_idx, utils::ClosureSubst, Interner, ProjectionTy, Substitution, TraitEnvironment, Ty, }; pub use self::{ adt::{layout_of_adt_query, layout_of_adt_recover}, target::target_data_layout_query, }; mod adt; mod target; #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct RustcEnumVariantIdx(pub usize); impl rustc_index::Idx for RustcEnumVariantIdx { fn new(idx: usize) -> Self { RustcEnumVariantIdx(idx) } fn index(self) -> usize { self.0 } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct RustcFieldIdx(pub LocalFieldId); impl RustcFieldIdx { pub fn new(idx: usize) -> Self { RustcFieldIdx(Idx::from_raw(RawIdx::from(idx as u32))) } } impl rustc_index::Idx for RustcFieldIdx { fn new(idx: usize) -> Self { RustcFieldIdx(Idx::from_raw(RawIdx::from(idx as u32))) } fn index(self) -> usize { u32::from(self.0.into_raw()) as usize } } pub type Layout = LayoutData; pub type TagEncoding = hir_def::layout::TagEncoding; pub type Variants = hir_def::layout::Variants; #[derive(Debug, PartialEq, Eq, Clone)] pub enum LayoutError { // FIXME: Remove more variants once they get added to LayoutCalculatorError BadCalc(LayoutCalculatorError<()>), HasErrorConst, HasErrorType, HasPlaceholder, InvalidSimdType, NotImplemented, RecursiveTypeWithoutIndirection, TargetLayoutNotAvailable, Unknown, UserReprTooSmall, } impl std::error::Error for LayoutError {} impl fmt::Display for LayoutError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { LayoutError::BadCalc(err) => err.fallback_fmt(f), LayoutError::HasErrorConst => write!(f, "type contains an unevaluatable const"), LayoutError::HasErrorType => write!(f, "type contains an error"), LayoutError::HasPlaceholder => write!(f, "type contains placeholders"), LayoutError::InvalidSimdType => write!(f, "invalid simd type definition"), LayoutError::NotImplemented => write!(f, "not implemented"), LayoutError::RecursiveTypeWithoutIndirection => { write!(f, "recursive type without indirection") } LayoutError::TargetLayoutNotAvailable => write!(f, "target layout not available"), LayoutError::Unknown => write!(f, "unknown"), LayoutError::UserReprTooSmall => { write!(f, "the `#[repr]` hint is too small to hold the discriminants of the enum") } } } } impl From> for LayoutError { fn from(err: LayoutCalculatorError) -> Self { LayoutError::BadCalc(err.without_payload()) } } struct LayoutCx<'a> { calc: LayoutCalculator<&'a TargetDataLayout>, } impl<'a> LayoutCx<'a> { fn new(target: &'a TargetDataLayout) -> Self { Self { calc: LayoutCalculator::new(target) } } } // FIXME: move this to the `rustc_abi`. fn layout_of_simd_ty( db: &dyn HirDatabase, id: StructId, subst: &Substitution, env: Arc, dl: &TargetDataLayout, ) -> Result, LayoutError> { let fields = db.field_types(id.into()); // Supported SIMD vectors are homogeneous ADTs with at least one field: // // * #[repr(simd)] struct S(T, T, T, T); // * #[repr(simd)] struct S { it: T, y: T, z: T, w: T } // * #[repr(simd)] struct S([T; 4]) // // where T is a primitive scalar (integer/float/pointer). let f0_ty = match fields.iter().next() { Some(it) => it.1.clone().substitute(Interner, subst), None => return Err(LayoutError::InvalidSimdType), }; // The element type and number of elements of the SIMD vector // are obtained from: // // * the element type and length of the single array field, if // the first field is of array type, or // // * the homogeneous field type and the number of fields. let (e_ty, e_len, is_array) = if let TyKind::Array(e_ty, _) = f0_ty.kind(Interner) { // Extract the number of elements from the layout of the array field: let FieldsShape::Array { count, .. } = db.layout_of_ty(f0_ty.clone(), env.clone())?.fields else { return Err(LayoutError::Unknown); }; (e_ty.clone(), count, true) } else { // First ADT field is not an array: (f0_ty, fields.iter().count() as u64, false) }; // Compute the ABI of the element type: let e_ly = db.layout_of_ty(e_ty, env)?; let BackendRepr::Scalar(e_abi) = e_ly.backend_repr else { return Err(LayoutError::Unknown); }; // Compute the size and alignment of the vector: let size = e_ly .size .checked_mul(e_len, dl) .ok_or(LayoutError::BadCalc(LayoutCalculatorError::SizeOverflow))?; let align = dl.vector_align(size); let size = size.align_to(align.abi); // Compute the placement of the vector fields: let fields = if is_array { FieldsShape::Arbitrary { offsets: [Size::ZERO].into(), memory_index: [0].into() } } else { FieldsShape::Array { stride: e_ly.size, count: e_len } }; Ok(Arc::new(Layout { variants: Variants::Single { index: struct_variant_idx() }, fields, backend_repr: BackendRepr::Vector { element: e_abi, count: e_len }, largest_niche: e_ly.largest_niche, size, align, max_repr_align: None, unadjusted_abi_align: align.abi, })) } pub fn layout_of_ty_query( db: &dyn HirDatabase, ty: Ty, trait_env: Arc, ) -> Result, LayoutError> { let krate = trait_env.krate; let Ok(target) = db.target_data_layout(krate) else { return Err(LayoutError::TargetLayoutNotAvailable); }; let dl = &*target; let cx = LayoutCx::new(dl); let ty = normalize(db, trait_env.clone(), ty); let result = match ty.kind(Interner) { TyKind::Adt(AdtId(def), subst) => { if let hir_def::AdtId::StructId(s) = def { let data = db.struct_data(*s); let repr = data.repr.unwrap_or_default(); if repr.simd() { return layout_of_simd_ty(db, *s, subst, trait_env, &target); } }; return db.layout_of_adt(*def, subst.clone(), trait_env); } TyKind::Scalar(s) => match s { chalk_ir::Scalar::Bool => Layout::scalar( dl, Scalar::Initialized { value: Primitive::Int(Integer::I8, false), valid_range: WrappingRange { start: 0, end: 1 }, }, ), chalk_ir::Scalar::Char => Layout::scalar( dl, Scalar::Initialized { value: Primitive::Int(Integer::I32, false), valid_range: WrappingRange { start: 0, end: 0x10FFFF }, }, ), chalk_ir::Scalar::Int(i) => scalar( dl, Primitive::Int( match i { IntTy::Isize => dl.ptr_sized_integer(), IntTy::I8 => Integer::I8, IntTy::I16 => Integer::I16, IntTy::I32 => Integer::I32, IntTy::I64 => Integer::I64, IntTy::I128 => Integer::I128, }, true, ), ), chalk_ir::Scalar::Uint(i) => scalar( dl, Primitive::Int( match i { UintTy::Usize => dl.ptr_sized_integer(), UintTy::U8 => Integer::I8, UintTy::U16 => Integer::I16, UintTy::U32 => Integer::I32, UintTy::U64 => Integer::I64, UintTy::U128 => Integer::I128, }, false, ), ), chalk_ir::Scalar::Float(f) => scalar( dl, Primitive::Float(match f { FloatTy::F16 => Float::F16, FloatTy::F32 => Float::F32, FloatTy::F64 => Float::F64, FloatTy::F128 => Float::F128, }), ), }, TyKind::Tuple(len, tys) => { let kind = if *len == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized }; let fields = tys .iter(Interner) .map(|k| db.layout_of_ty(k.assert_ty_ref(Interner).clone(), trait_env.clone())) .collect::, _>>()?; let fields = fields.iter().map(|it| &**it).collect::>(); let fields = fields.iter().collect::>(); cx.calc.univariant(&fields, &ReprOptions::default(), kind)? } TyKind::Array(element, count) => { let count = try_const_usize(db, count).ok_or(LayoutError::HasErrorConst)? as u64; let element = db.layout_of_ty(element.clone(), trait_env)?; let size = element .size .checked_mul(count, dl) .ok_or(LayoutError::BadCalc(LayoutCalculatorError::SizeOverflow))?; let backend_repr = if count != 0 && matches!(element.backend_repr, BackendRepr::Uninhabited) { BackendRepr::Uninhabited } else { BackendRepr::Memory { sized: true } }; let largest_niche = if count != 0 { element.largest_niche } else { None }; Layout { variants: Variants::Single { index: struct_variant_idx() }, fields: FieldsShape::Array { stride: element.size, count }, backend_repr, largest_niche, align: element.align, size, max_repr_align: None, unadjusted_abi_align: element.align.abi, } } TyKind::Slice(element) => { let element = db.layout_of_ty(element.clone(), trait_env)?; Layout { variants: Variants::Single { index: struct_variant_idx() }, fields: FieldsShape::Array { stride: element.size, count: 0 }, backend_repr: BackendRepr::Memory { sized: false }, largest_niche: None, align: element.align, size: Size::ZERO, max_repr_align: None, unadjusted_abi_align: element.align.abi, } } TyKind::Str => Layout { variants: Variants::Single { index: struct_variant_idx() }, fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 }, backend_repr: BackendRepr::Memory { sized: false }, largest_niche: None, align: dl.i8_align, size: Size::ZERO, max_repr_align: None, unadjusted_abi_align: dl.i8_align.abi, }, // Potentially-wide pointers. TyKind::Ref(_, _, pointee) | TyKind::Raw(_, pointee) => { let mut data_ptr = scalar_unit(dl, Primitive::Pointer(AddressSpace::DATA)); if matches!(ty.kind(Interner), TyKind::Ref(..)) { data_ptr.valid_range_mut().start = 1; } // let pointee = tcx.normalize_erasing_regions(param_env, pointee); // if pointee.is_sized(tcx.at(DUMMY_SP), param_env) { // return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr))); // } let mut unsized_part = struct_tail_erasing_lifetimes(db, pointee.clone()); if let TyKind::AssociatedType(id, subst) = unsized_part.kind(Interner) { unsized_part = TyKind::Alias(chalk_ir::AliasTy::Projection(ProjectionTy { associated_ty_id: *id, substitution: subst.clone(), })) .intern(Interner); } unsized_part = normalize(db, trait_env, unsized_part); let metadata = match unsized_part.kind(Interner) { TyKind::Slice(_) | TyKind::Str => { scalar_unit(dl, Primitive::Int(dl.ptr_sized_integer(), false)) } TyKind::Dyn(..) => { let mut vtable = scalar_unit(dl, Primitive::Pointer(AddressSpace::DATA)); vtable.valid_range_mut().start = 1; vtable } _ => { // pointee is sized return Ok(Arc::new(Layout::scalar(dl, data_ptr))); } }; // Effectively a (ptr, meta) tuple. cx.calc.scalar_pair(data_ptr, metadata) } TyKind::FnDef(_, _) => layout_of_unit(&cx)?, TyKind::Never => cx.calc.layout_of_never_type(), TyKind::Dyn(_) | TyKind::Foreign(_) => { let mut unit = layout_of_unit(&cx)?; match &mut unit.backend_repr { BackendRepr::Memory { sized } => *sized = false, _ => return Err(LayoutError::Unknown), } unit } TyKind::Function(_) => { let mut ptr = scalar_unit(dl, Primitive::Pointer(dl.instruction_address_space)); ptr.valid_range_mut().start = 1; Layout::scalar(dl, ptr) } TyKind::OpaqueType(opaque_ty_id, _) => { let impl_trait_id = db.lookup_intern_impl_trait_id((*opaque_ty_id).into()); match impl_trait_id { crate::ImplTraitId::ReturnTypeImplTrait(func, idx) => { let infer = db.infer(func.into()); return db.layout_of_ty(infer.type_of_rpit[idx].clone(), trait_env); } crate::ImplTraitId::TypeAliasImplTrait(..) => { return Err(LayoutError::NotImplemented); } crate::ImplTraitId::AsyncBlockTypeImplTrait(_, _) => { return Err(LayoutError::NotImplemented) } } } TyKind::Closure(c, subst) => { let InternedClosure(def, _) = db.lookup_intern_closure((*c).into()); let infer = db.infer(def); let (captures, _) = infer.closure_info(c); let fields = captures .iter() .map(|it| { db.layout_of_ty( it.ty.clone().substitute(Interner, ClosureSubst(subst).parent_subst()), trait_env.clone(), ) }) .collect::, _>>()?; let fields = fields.iter().map(|it| &**it).collect::>(); let fields = fields.iter().collect::>(); cx.calc.univariant(&fields, &ReprOptions::default(), StructKind::AlwaysSized)? } TyKind::Coroutine(_, _) | TyKind::CoroutineWitness(_, _) => { return Err(LayoutError::NotImplemented) } TyKind::Error => return Err(LayoutError::HasErrorType), TyKind::AssociatedType(id, subst) => { // Try again with `TyKind::Alias` to normalize the associated type. let ty = TyKind::Alias(chalk_ir::AliasTy::Projection(ProjectionTy { associated_ty_id: *id, substitution: subst.clone(), })) .intern(Interner); return db.layout_of_ty(ty, trait_env); } TyKind::Alias(_) | TyKind::Placeholder(_) | TyKind::BoundVar(_) | TyKind::InferenceVar(_, _) => return Err(LayoutError::HasPlaceholder), }; Ok(Arc::new(result)) } pub fn layout_of_ty_recover( _: &dyn HirDatabase, _: &Cycle, _: &Ty, _: &Arc, ) -> Result, LayoutError> { Err(LayoutError::RecursiveTypeWithoutIndirection) } fn layout_of_unit(cx: &LayoutCx<'_>) -> Result { cx.calc .univariant::( IndexSlice::empty(), &ReprOptions::default(), StructKind::AlwaysSized, ) .map_err(Into::into) } fn struct_tail_erasing_lifetimes(db: &dyn HirDatabase, pointee: Ty) -> Ty { match pointee.kind(Interner) { TyKind::Adt(AdtId(hir_def::AdtId::StructId(i)), subst) => { let data = db.struct_data(*i); let mut it = data.variant_data.fields().iter().rev(); match it.next() { Some((f, _)) => { let last_field_ty = field_ty(db, (*i).into(), f, subst); struct_tail_erasing_lifetimes(db, last_field_ty) } None => pointee, } } _ => pointee, } } fn field_ty( db: &dyn HirDatabase, def: hir_def::VariantId, fd: LocalFieldId, subst: &Substitution, ) -> Ty { db.field_types(def)[fd].clone().substitute(Interner, subst) } fn scalar_unit(dl: &TargetDataLayout, value: Primitive) -> Scalar { Scalar::Initialized { value, valid_range: WrappingRange::full(value.size(dl)) } } fn scalar(dl: &TargetDataLayout, value: Primitive) -> Layout { Layout::scalar(dl, scalar_unit(dl, value)) } #[cfg(test)] mod tests;