//! Client-side Proc-Macro crate //! //! We separate proc-macro expanding logic to an extern program to allow //! different implementations (e.g. wasm or dylib loading). And this crate //! is used to provide basic infrastructure for communication between two //! processes: Client (RA itself), Server (the external program) pub mod msg; mod process; mod rpc; use base_db::{Env, ProcMacro}; use std::{ ffi::OsStr, fs::File, io::{self, Read}, path::{Path, PathBuf}, sync::Arc, }; use tt::{SmolStr, Subtree}; use crate::process::{ProcMacroProcessSrv, ProcMacroProcessThread}; pub use rpc::{ExpansionResult, ExpansionTask, ListMacrosResult, ListMacrosTask, ProcMacroKind}; use memmap::Mmap; use object::read::{File as BinaryFile, Object, ObjectSection}; use snap::read::FrameDecoder as SnapDecoder; #[derive(Debug, Clone)] struct ProcMacroProcessExpander { process: Arc, dylib_path: PathBuf, name: SmolStr, } impl Eq for ProcMacroProcessExpander {} impl PartialEq for ProcMacroProcessExpander { fn eq(&self, other: &Self) -> bool { self.name == other.name && self.dylib_path == other.dylib_path && Arc::ptr_eq(&self.process, &other.process) } } impl base_db::ProcMacroExpander for ProcMacroProcessExpander { fn expand( &self, subtree: &Subtree, attr: Option<&Subtree>, env: &Env, ) -> Result { let task = ExpansionTask { macro_body: subtree.clone(), macro_name: self.name.to_string(), attributes: attr.cloned(), lib: self.dylib_path.to_path_buf(), env: env.iter().map(|(k, v)| (k.to_string(), v.to_string())).collect(), }; let result: ExpansionResult = self.process.send_task(msg::Request::ExpansionMacro(task))?; Ok(result.expansion) } } #[derive(Debug)] pub struct ProcMacroClient { process: Arc, thread: ProcMacroProcessThread, } impl ProcMacroClient { pub fn extern_process( process_path: PathBuf, args: impl IntoIterator>, ) -> io::Result { let (thread, process) = ProcMacroProcessSrv::run(process_path, args)?; Ok(ProcMacroClient { process: Arc::new(process), thread }) } pub fn by_dylib_path(&self, dylib_path: &Path) -> Vec { let macros = match self.process.find_proc_macros(dylib_path) { Err(err) => { eprintln!("Failed to find proc macros. Error: {:#?}", err); return vec![]; } Ok(macros) => macros, }; macros .into_iter() .map(|(name, kind)| { let name = SmolStr::new(&name); let kind = match kind { ProcMacroKind::CustomDerive => base_db::ProcMacroKind::CustomDerive, ProcMacroKind::FuncLike => base_db::ProcMacroKind::FuncLike, ProcMacroKind::Attr => base_db::ProcMacroKind::Attr, }; let expander = Arc::new(ProcMacroProcessExpander { process: self.process.clone(), name: name.clone(), dylib_path: dylib_path.into(), }); ProcMacro { name, kind, expander } }) .collect() } // This is used inside self.read_version() to locate the ".rustc" section // from a proc macro crate's binary file. fn read_section<'a>(&self, dylib_binary: &'a [u8], section_name: &str) -> io::Result<&'a [u8]> { BinaryFile::parse(dylib_binary) .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))? .section_by_name(section_name) .ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "section read error"))? .data() .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)) } // Check the version of rustc that was used to compile a proc macro crate's // binary file. // A proc macro crate binary's ".rustc" section has following byte layout: // * [b'r',b'u',b's',b't',0,0,0,5] is the first 8 bytes // * ff060000 734e6150 is followed, it's the snappy format magic bytes, // means bytes from here(including this sequence) are compressed in // snappy compression format. Version info is inside here, so decompress // this. // The bytes you get after decompressing the snappy format portion has // following layout: // * [b'r',b'u',b's',b't',0,0,0,5] is the first 8 bytes(again) // * [crate root bytes] next 4 bytes is to store crate root position, // according to rustc's source code comment // * [length byte] next 1 byte tells us how many bytes we should read next // for the version string's utf8 bytes // * [version string bytes encoded in utf8] <- GET THIS BOI // * [some more bytes that we don really care but still there] :-) // Check this issue for more about the bytes layout: // https://github.com/rust-analyzer/rust-analyzer/issues/6174 #[allow(unused)] fn read_version(&self, dylib_path: &Path) -> io::Result { let dylib_file = File::open(dylib_path)?; let dylib_mmaped = unsafe { Mmap::map(&dylib_file) }?; let dot_rustc = self.read_section(&dylib_mmaped, ".rustc")?; let header = &dot_rustc[..8]; const EXPECTED_HEADER: [u8; 8] = [b'r', b'u', b's', b't', 0, 0, 0, 5]; // check if header is valid if header != EXPECTED_HEADER { return Err(io::Error::new( io::ErrorKind::InvalidData, format!("only metadata version 5 is supported, section header was: {:?}", header), )); } let snappy_portion = &dot_rustc[8..]; let mut snappy_decoder = SnapDecoder::new(snappy_portion); // the bytes before version string bytes, so this basically is: // 8 bytes for [b'r',b'u',b's',b't',0,0,0,5] // 4 bytes for [crate root bytes] // 1 byte for length of version string // so 13 bytes in total, and we should check the 13th byte // to know the length let mut bytes_before_version = [0u8; 13]; snappy_decoder.read_exact(&mut bytes_before_version)?; let length = bytes_before_version[12]; // what? can't use -1 indexing? let mut version_string_utf8 = vec![0u8; length as usize]; snappy_decoder.read_exact(&mut version_string_utf8)?; let version_string = String::from_utf8(version_string_utf8); version_string.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)) } }