//! cargo_check provides the functionality needed to run `cargo check` or //! another compatible command (f.x. clippy) in a background thread and provide //! LSP diagnostics based on the output of the command. use cargo_metadata::Message; use crossbeam_channel::{select, unbounded, Receiver, RecvError, Sender}; use lsp_types::{ Diagnostic, Url, WorkDoneProgress, WorkDoneProgressBegin, WorkDoneProgressEnd, WorkDoneProgressReport, }; use parking_lot::RwLock; use std::{ collections::HashMap, path::PathBuf, process::{Command, Stdio}, sync::Arc, thread::JoinHandle, time::Instant, }; mod conv; use crate::conv::{map_rust_diagnostic_to_lsp, MappedRustDiagnostic, SuggestedFix}; #[derive(Clone, Debug)] pub struct CheckOptions { pub enable: bool, pub args: Vec, pub command: String, pub all_targets: bool, } /// CheckWatcher wraps the shared state and communication machinery used for /// running `cargo check` (or other compatible command) and providing /// diagnostics based on the output. /// The spawned thread is shut down when this struct is dropped. #[derive(Debug)] pub struct CheckWatcher { pub task_recv: Receiver, pub cmd_send: Sender, pub shared: Arc>, handle: Option>, } impl CheckWatcher { pub fn new(options: &CheckOptions, workspace_root: PathBuf) -> CheckWatcher { let options = options.clone(); let shared = Arc::new(RwLock::new(CheckWatcherSharedState::new())); let (task_send, task_recv) = unbounded::(); let (cmd_send, cmd_recv) = unbounded::(); let shared_ = shared.clone(); let handle = std::thread::spawn(move || { let mut check = CheckWatcherState::new(options, workspace_root, shared_); check.run(&task_send, &cmd_recv); }); CheckWatcher { task_recv, cmd_send, handle: Some(handle), shared } } /// Schedule a re-start of the cargo check worker. pub fn update(&self) { self.cmd_send.send(CheckCommand::Update).unwrap(); } } impl std::ops::Drop for CheckWatcher { fn drop(&mut self) { if let Some(handle) = self.handle.take() { // Replace our reciever with dummy one, so we can drop and close the // one actually communicating with the thread let recv = std::mem::replace(&mut self.task_recv, crossbeam_channel::never()); // Dropping the original reciever finishes the thread loop drop(recv); // Join the thread, it should finish shortly. We don't really care // whether it panicked, so it is safe to ignore the result let _ = handle.join(); } } } #[derive(Debug)] pub struct CheckWatcherSharedState { diagnostic_collection: HashMap>, suggested_fix_collection: HashMap>, } impl CheckWatcherSharedState { fn new() -> CheckWatcherSharedState { CheckWatcherSharedState { diagnostic_collection: HashMap::new(), suggested_fix_collection: HashMap::new(), } } /// Clear the cached diagnostics, and schedule updating diagnostics by the /// server, to clear stale results. pub fn clear(&mut self, task_send: &Sender) { let cleared_files: Vec = self.diagnostic_collection.keys().cloned().collect(); self.diagnostic_collection.clear(); self.suggested_fix_collection.clear(); for uri in cleared_files { task_send.send(CheckTask::Update(uri.clone())).unwrap(); } } pub fn diagnostics_for(&self, uri: &Url) -> Option<&[Diagnostic]> { self.diagnostic_collection.get(uri).map(|d| d.as_slice()) } pub fn fixes_for(&self, uri: &Url) -> Option<&[SuggestedFix]> { self.suggested_fix_collection.get(uri).map(|d| d.as_slice()) } fn add_diagnostic(&mut self, file_uri: Url, diagnostic: Diagnostic) { let diagnostics = self.diagnostic_collection.entry(file_uri).or_default(); // If we're building multiple targets it's possible we've already seen this diagnostic let is_duplicate = diagnostics.iter().any(|d| are_diagnostics_equal(d, &diagnostic)); if is_duplicate { return; } diagnostics.push(diagnostic); } fn add_suggested_fix_for_diagnostic( &mut self, mut suggested_fix: SuggestedFix, diagnostic: &Diagnostic, ) { let file_uri = suggested_fix.location.uri.clone(); let file_suggestions = self.suggested_fix_collection.entry(file_uri).or_default(); let existing_suggestion: Option<&mut SuggestedFix> = file_suggestions.iter_mut().find(|s| s == &&suggested_fix); if let Some(existing_suggestion) = existing_suggestion { // The existing suggestion also applies to this new diagnostic existing_suggestion.diagnostics.push(diagnostic.clone()); } else { // We haven't seen this suggestion before suggested_fix.diagnostics.push(diagnostic.clone()); file_suggestions.push(suggested_fix); } } } #[derive(Debug)] pub enum CheckTask { /// Request a update of the given files diagnostics Update(Url), /// Request check progress notification to client Status(WorkDoneProgress), } pub enum CheckCommand { /// Request re-start of check thread Update, } struct CheckWatcherState { options: CheckOptions, workspace_root: PathBuf, watcher: WatchThread, last_update_req: Option, shared: Arc>, } impl CheckWatcherState { pub fn new( options: CheckOptions, workspace_root: PathBuf, shared: Arc>, ) -> CheckWatcherState { let watcher = WatchThread::new(&options, &workspace_root); CheckWatcherState { options, workspace_root, watcher, last_update_req: None, shared, } } pub fn run(&mut self, task_send: &Sender, cmd_recv: &Receiver) { loop { select! { recv(&cmd_recv) -> cmd => match cmd { Ok(cmd) => self.handle_command(cmd), Err(RecvError) => { // Command channel has closed, so shut down break; }, }, recv(self.watcher.message_recv) -> msg => match msg { Ok(msg) => self.handle_message(msg, task_send), Err(RecvError) => { // Task channel has closed, so shut down break; }, } }; if self.should_recheck() { self.last_update_req.take(); self.shared.write().clear(task_send); // By replacing the watcher, we drop the previous one which // causes it to shut down automatically. self.watcher = WatchThread::new(&self.options, &self.workspace_root); } } } fn should_recheck(&mut self) -> bool { if let Some(_last_update_req) = &self.last_update_req { // We currently only request an update on save, as we need up to // date source on disk for cargo check to do it's magic, so we // don't really need to debounce the requests at this point. return true; } false } fn handle_command(&mut self, cmd: CheckCommand) { match cmd { CheckCommand::Update => self.last_update_req = Some(Instant::now()), } } fn handle_message(&mut self, msg: CheckEvent, task_send: &Sender) { match msg { CheckEvent::Begin => { task_send .send(CheckTask::Status(WorkDoneProgress::Begin(WorkDoneProgressBegin { title: "Running 'cargo check'".to_string(), cancellable: Some(false), message: None, percentage: None, }))) .unwrap(); } CheckEvent::End => { task_send .send(CheckTask::Status(WorkDoneProgress::End(WorkDoneProgressEnd { message: None, }))) .unwrap(); } CheckEvent::Msg(Message::CompilerArtifact(msg)) => { task_send .send(CheckTask::Status(WorkDoneProgress::Report(WorkDoneProgressReport { cancellable: Some(false), message: Some(msg.target.name), percentage: None, }))) .unwrap(); } CheckEvent::Msg(Message::CompilerMessage(msg)) => { let map_result = match map_rust_diagnostic_to_lsp(&msg.message, &self.workspace_root) { Some(map_result) => map_result, None => return, }; let MappedRustDiagnostic { location, diagnostic, suggested_fixes } = map_result; let file_uri = location.uri.clone(); if !suggested_fixes.is_empty() { for suggested_fix in suggested_fixes { self.shared .write() .add_suggested_fix_for_diagnostic(suggested_fix, &diagnostic); } } self.shared.write().add_diagnostic(file_uri, diagnostic); task_send.send(CheckTask::Update(location.uri)).unwrap(); } CheckEvent::Msg(Message::BuildScriptExecuted(_msg)) => {} CheckEvent::Msg(Message::Unknown) => {} } } } /// WatchThread exists to wrap around the communication needed to be able to /// run `cargo check` without blocking. Currently the Rust standard library /// doesn't provide a way to read sub-process output without blocking, so we /// have to wrap sub-processes output handling in a thread and pass messages /// back over a channel. /// The correct way to dispose of the thread is to drop it, on which the /// sub-process will be killed, and the thread will be joined. struct WatchThread { handle: Option>, message_recv: Receiver, } enum CheckEvent { Begin, Msg(cargo_metadata::Message), End, } impl WatchThread { fn new(options: &CheckOptions, workspace_root: &PathBuf) -> WatchThread { let mut args: Vec = vec![ options.command.clone(), "--message-format=json".to_string(), "--manifest-path".to_string(), format!("{}/Cargo.toml", workspace_root.to_string_lossy()), ]; if options.all_targets { args.push("--all-targets".to_string()); } args.extend(options.args.iter().cloned()); let (message_send, message_recv) = unbounded(); let enabled = options.enable; let handle = std::thread::spawn(move || { if !enabled { return; } let mut command = Command::new("cargo") .args(&args) .stdout(Stdio::piped()) .stderr(Stdio::null()) .spawn() .expect("couldn't launch cargo"); // If we trigger an error here, we will do so in the loop instead, // which will break out of the loop, and continue the shutdown let _ = message_send.send(CheckEvent::Begin); for message in cargo_metadata::parse_messages(command.stdout.take().unwrap()) { let message = match message { Ok(message) => message, Err(err) => { log::error!("Invalid json from cargo check, ignoring: {}", err); continue; } }; match message_send.send(CheckEvent::Msg(message)) { Ok(()) => {} Err(_err) => { // The send channel was closed, so we want to shutdown break; } } } // We can ignore any error here, as we are already in the progress // of shutting down. let _ = message_send.send(CheckEvent::End); // It is okay to ignore the result, as it only errors if the process is already dead let _ = command.kill(); // Again, we don't care about the exit status so just ignore the result let _ = command.wait(); }); WatchThread { handle: Some(handle), message_recv } } } impl std::ops::Drop for WatchThread { fn drop(&mut self) { if let Some(handle) = self.handle.take() { // Replace our reciever with dummy one, so we can drop and close the // one actually communicating with the thread let recv = std::mem::replace(&mut self.message_recv, crossbeam_channel::never()); // Dropping the original reciever initiates thread sub-process shutdown drop(recv); // Join the thread, it should finish shortly. We don't really care // whether it panicked, so it is safe to ignore the result let _ = handle.join(); } } } fn are_diagnostics_equal(left: &Diagnostic, right: &Diagnostic) -> bool { left.source == right.source && left.severity == right.severity && left.range == right.range && left.message == right.message }