//! HIR (previously known as descriptors) provides a high-level object oriented //! access to Rust code. //! //! The principal difference between HIR and syntax trees is that HIR is bound //! to a particular crate instance. That is, it has cfg flags and features //! applied. So, the relation between syntax and HIR is many-to-one. //! //! HIR is the public API of the all of the compiler logic above syntax trees. //! It is written in "OO" style. Each type is self contained (as in, it knows its //! parents and full context). It should be "clean code". //! //! `hir_*` crates are the implementation of the compiler logic. //! They are written in "ECS" style, with relatively little abstractions. //! Many types are not self-contained, and explicitly use local indexes, arenas, etc. //! //! `hir` is what insulates the "we don't know how to actually write an incremental compiler" //! from the ide with completions, hovers, etc. It is a (soft, internal) boundary: //! . #![warn(rust_2018_idioms, unused_lifetimes, semicolon_in_expressions_from_macros)] #![recursion_limit = "512"] mod semantics; mod source_analyzer; mod from_id; mod attrs; mod has_source; pub mod diagnostics; pub mod db; pub mod symbols; mod display; use std::{iter, ops::ControlFlow, sync::Arc}; use arrayvec::ArrayVec; use base_db::{CrateDisplayName, CrateId, CrateOrigin, Edition, FileId, ProcMacroKind}; use either::Either; use hir_def::{ body::{BodyDiagnostic, SyntheticSyntax}, data::adt::VariantData, generics::{LifetimeParamData, TypeOrConstParamData, TypeParamProvenance}, hir::{BindingAnnotation, BindingId, ExprOrPatId, LabelId, Pat}, item_tree::ItemTreeNode, lang_item::{LangItem, LangItemTarget}, layout::ReprOptions, macro_id_to_def_id, nameres::{self, diagnostics::DefDiagnostic, ModuleOrigin}, per_ns::PerNs, resolver::{HasResolver, Resolver}, src::HasSource as _, AdtId, AssocItemId, AssocItemLoc, AttrDefId, ConstId, ConstParamId, DefWithBodyId, EnumId, EnumVariantId, FunctionId, GenericDefId, HasModule, ImplId, ItemContainerId, LifetimeParamId, LocalEnumVariantId, LocalFieldId, Lookup, MacroExpander, MacroId, ModuleId, StaticId, StructId, TraitAliasId, TraitId, TypeAliasId, TypeOrConstParamId, TypeParamId, UnionId, }; use hir_expand::{name::name, MacroCallKind}; use hir_ty::{ all_super_traits, autoderef, consteval::{try_const_usize, unknown_const_as_generic, ConstEvalError, ConstExt}, diagnostics::BodyValidationDiagnostic, display::HexifiedConst, layout::{layout_of_ty, Layout, LayoutError}, method_resolution::{self, TyFingerprint}, mir::{self, interpret_mir}, primitive::UintTy, traits::FnTrait, AliasTy, CallableDefId, CallableSig, Canonical, CanonicalVarKinds, Cast, ClosureId, GenericArgData, Interner, ParamKind, QuantifiedWhereClause, Scalar, Substitution, TraitEnvironment, TraitRefExt, Ty, TyBuilder, TyDefId, TyExt, TyKind, WhereClause, }; use itertools::Itertools; use nameres::diagnostics::DefDiagnosticKind; use once_cell::unsync::Lazy; use rustc_hash::FxHashSet; use stdx::{impl_from, never}; use syntax::{ ast::{self, HasAttrs as _, HasDocComments, HasName}, AstNode, AstPtr, SmolStr, SyntaxNode, SyntaxNodePtr, TextRange, T, }; use crate::db::{DefDatabase, HirDatabase}; pub use crate::{ attrs::{HasAttrs, Namespace}, diagnostics::{ AnyDiagnostic, BreakOutsideOfLoop, ExpectedFunction, InactiveCode, IncoherentImpl, IncorrectCase, InvalidDeriveTarget, MacroDefError, MacroError, MacroExpansionParseError, MalformedDerive, MismatchedArgCount, MissingFields, MissingMatchArms, MissingUnsafe, NeedMut, NoSuchField, PrivateAssocItem, PrivateField, ReplaceFilterMapNextWithFindMap, TypeMismatch, UndeclaredLabel, UnimplementedBuiltinMacro, UnreachableLabel, UnresolvedExternCrate, UnresolvedField, UnresolvedImport, UnresolvedMacroCall, UnresolvedMethodCall, UnresolvedModule, UnresolvedProcMacro, UnusedMut, }, has_source::HasSource, semantics::{PathResolution, Semantics, SemanticsScope, TypeInfo, VisibleTraits}, }; // Be careful with these re-exports. // // `hir` is the boundary between the compiler and the IDE. It should try hard to // isolate the compiler from the ide, to allow the two to be refactored // independently. Re-exporting something from the compiler is the sure way to // breach the boundary. // // Generally, a refactoring which *removes* a name from this list is a good // idea! pub use { cfg::{CfgAtom, CfgExpr, CfgOptions}, hir_def::{ attr::{builtin::AttributeTemplate, Attrs, AttrsWithOwner, Documentation}, data::adt::StructKind, find_path::PrefixKind, import_map, nameres::ModuleSource, path::{ModPath, PathKind}, type_ref::{Mutability, TypeRef}, visibility::Visibility, // FIXME: This is here since it is input of a method in `HirWrite` // and things outside of hir need to implement that trait. We probably // should move whole `hir_ty::display` to this crate so we will become // able to use `ModuleDef` or `Definition` instead of `ModuleDefId`. ModuleDefId, }, hir_expand::{ attrs::Attr, name::{known, Name}, ExpandResult, HirFileId, InFile, MacroFile, Origin, }, hir_ty::{ display::{ClosureStyle, HirDisplay, HirDisplayError, HirWrite}, mir::MirEvalError, PointerCast, Safety, }, }; // These are negative re-exports: pub using these names is forbidden, they // should remain private to hir internals. #[allow(unused)] use { hir_def::path::Path, hir_expand::{hygiene::Hygiene, name::AsName}, }; /// hir::Crate describes a single crate. It's the main interface with which /// a crate's dependencies interact. Mostly, it should be just a proxy for the /// root module. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Crate { pub(crate) id: CrateId, } #[derive(Debug)] pub struct CrateDependency { pub krate: Crate, pub name: Name, } impl Crate { pub fn origin(self, db: &dyn HirDatabase) -> CrateOrigin { db.crate_graph()[self.id].origin.clone() } pub fn is_builtin(self, db: &dyn HirDatabase) -> bool { matches!(self.origin(db), CrateOrigin::Lang(_)) } pub fn dependencies(self, db: &dyn HirDatabase) -> Vec { db.crate_graph()[self.id] .dependencies .iter() .map(|dep| { let krate = Crate { id: dep.crate_id }; let name = dep.as_name(); CrateDependency { krate, name } }) .collect() } pub fn reverse_dependencies(self, db: &dyn HirDatabase) -> Vec { let crate_graph = db.crate_graph(); crate_graph .iter() .filter(|&krate| { crate_graph[krate].dependencies.iter().any(|it| it.crate_id == self.id) }) .map(|id| Crate { id }) .collect() } pub fn transitive_reverse_dependencies( self, db: &dyn HirDatabase, ) -> impl Iterator { db.crate_graph().transitive_rev_deps(self.id).map(|id| Crate { id }) } pub fn root_module(self, db: &dyn HirDatabase) -> Module { let def_map = db.crate_def_map(self.id); Module { id: def_map.module_id(def_map.root()) } } pub fn modules(self, db: &dyn HirDatabase) -> Vec { let def_map = db.crate_def_map(self.id); def_map.modules().map(|(id, _)| def_map.module_id(id).into()).collect() } pub fn root_file(self, db: &dyn HirDatabase) -> FileId { db.crate_graph()[self.id].root_file_id } pub fn edition(self, db: &dyn HirDatabase) -> Edition { db.crate_graph()[self.id].edition } pub fn version(self, db: &dyn HirDatabase) -> Option { db.crate_graph()[self.id].version.clone() } pub fn display_name(self, db: &dyn HirDatabase) -> Option { db.crate_graph()[self.id].display_name.clone() } pub fn query_external_importables( self, db: &dyn DefDatabase, query: import_map::Query, ) -> impl Iterator> { let _p = profile::span("query_external_importables"); import_map::search_dependencies(db, self.into(), query).into_iter().map(|item| { match ItemInNs::from(item) { ItemInNs::Types(mod_id) | ItemInNs::Values(mod_id) => Either::Left(mod_id), ItemInNs::Macros(mac_id) => Either::Right(mac_id), } }) } pub fn all(db: &dyn HirDatabase) -> Vec { db.crate_graph().iter().map(|id| Crate { id }).collect() } /// Try to get the root URL of the documentation of a crate. pub fn get_html_root_url(self: &Crate, db: &dyn HirDatabase) -> Option { // Look for #![doc(html_root_url = "...")] let attrs = db.attrs(AttrDefId::ModuleId(self.root_module(db).into())); let doc_url = attrs.by_key("doc").find_string_value_in_tt("html_root_url"); doc_url.map(|s| s.trim_matches('"').trim_end_matches('/').to_owned() + "/") } pub fn cfg(&self, db: &dyn HirDatabase) -> CfgOptions { db.crate_graph()[self.id].cfg_options.clone() } pub fn potential_cfg(&self, db: &dyn HirDatabase) -> CfgOptions { let data = &db.crate_graph()[self.id]; data.potential_cfg_options.clone().unwrap_or_else(|| data.cfg_options.clone()) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Module { pub(crate) id: ModuleId, } /// The defs which can be visible in the module. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum ModuleDef { Module(Module), Function(Function), Adt(Adt), // Can't be directly declared, but can be imported. Variant(Variant), Const(Const), Static(Static), Trait(Trait), TraitAlias(TraitAlias), TypeAlias(TypeAlias), BuiltinType(BuiltinType), Macro(Macro), } impl_from!( Module, Function, Adt(Struct, Enum, Union), Variant, Const, Static, Trait, TraitAlias, TypeAlias, BuiltinType, Macro for ModuleDef ); impl From for ModuleDef { fn from(var: VariantDef) -> Self { match var { VariantDef::Struct(t) => Adt::from(t).into(), VariantDef::Union(t) => Adt::from(t).into(), VariantDef::Variant(t) => t.into(), } } } impl ModuleDef { pub fn module(self, db: &dyn HirDatabase) -> Option { match self { ModuleDef::Module(it) => it.parent(db), ModuleDef::Function(it) => Some(it.module(db)), ModuleDef::Adt(it) => Some(it.module(db)), ModuleDef::Variant(it) => Some(it.module(db)), ModuleDef::Const(it) => Some(it.module(db)), ModuleDef::Static(it) => Some(it.module(db)), ModuleDef::Trait(it) => Some(it.module(db)), ModuleDef::TraitAlias(it) => Some(it.module(db)), ModuleDef::TypeAlias(it) => Some(it.module(db)), ModuleDef::Macro(it) => Some(it.module(db)), ModuleDef::BuiltinType(_) => None, } } pub fn canonical_path(&self, db: &dyn HirDatabase) -> Option { let mut segments = vec![self.name(db)?]; for m in self.module(db)?.path_to_root(db) { segments.extend(m.name(db)) } segments.reverse(); Some(segments.into_iter().join("::")) } pub fn canonical_module_path( &self, db: &dyn HirDatabase, ) -> Option> { self.module(db).map(|it| it.path_to_root(db).into_iter().rev()) } pub fn name(self, db: &dyn HirDatabase) -> Option { let name = match self { ModuleDef::Module(it) => it.name(db)?, ModuleDef::Const(it) => it.name(db)?, ModuleDef::Adt(it) => it.name(db), ModuleDef::Trait(it) => it.name(db), ModuleDef::TraitAlias(it) => it.name(db), ModuleDef::Function(it) => it.name(db), ModuleDef::Variant(it) => it.name(db), ModuleDef::TypeAlias(it) => it.name(db), ModuleDef::Static(it) => it.name(db), ModuleDef::Macro(it) => it.name(db), ModuleDef::BuiltinType(it) => it.name(), }; Some(name) } pub fn diagnostics(self, db: &dyn HirDatabase) -> Vec { let id = match self { ModuleDef::Adt(it) => match it { Adt::Struct(it) => it.id.into(), Adt::Enum(it) => it.id.into(), Adt::Union(it) => it.id.into(), }, ModuleDef::Trait(it) => it.id.into(), ModuleDef::TraitAlias(it) => it.id.into(), ModuleDef::Function(it) => it.id.into(), ModuleDef::TypeAlias(it) => it.id.into(), ModuleDef::Module(it) => it.id.into(), ModuleDef::Const(it) => it.id.into(), ModuleDef::Static(it) => it.id.into(), ModuleDef::Variant(it) => { EnumVariantId { parent: it.parent.into(), local_id: it.id }.into() } ModuleDef::BuiltinType(_) | ModuleDef::Macro(_) => return Vec::new(), }; let module = match self.module(db) { Some(it) => it, None => return Vec::new(), }; let mut acc = Vec::new(); match self.as_def_with_body() { Some(def) => { def.diagnostics(db, &mut acc); } None => { for diag in hir_ty::diagnostics::incorrect_case(db, module.id.krate(), id) { acc.push(diag.into()) } } } acc } pub fn as_def_with_body(self) -> Option { match self { ModuleDef::Function(it) => Some(it.into()), ModuleDef::Const(it) => Some(it.into()), ModuleDef::Static(it) => Some(it.into()), ModuleDef::Variant(it) => Some(it.into()), ModuleDef::Module(_) | ModuleDef::Adt(_) | ModuleDef::Trait(_) | ModuleDef::TraitAlias(_) | ModuleDef::TypeAlias(_) | ModuleDef::Macro(_) | ModuleDef::BuiltinType(_) => None, } } pub fn attrs(&self, db: &dyn HirDatabase) -> Option { Some(match self { ModuleDef::Module(it) => it.attrs(db), ModuleDef::Function(it) => it.attrs(db), ModuleDef::Adt(it) => it.attrs(db), ModuleDef::Variant(it) => it.attrs(db), ModuleDef::Const(it) => it.attrs(db), ModuleDef::Static(it) => it.attrs(db), ModuleDef::Trait(it) => it.attrs(db), ModuleDef::TraitAlias(it) => it.attrs(db), ModuleDef::TypeAlias(it) => it.attrs(db), ModuleDef::Macro(it) => it.attrs(db), ModuleDef::BuiltinType(_) => return None, }) } } impl HasVisibility for ModuleDef { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { match *self { ModuleDef::Module(it) => it.visibility(db), ModuleDef::Function(it) => it.visibility(db), ModuleDef::Adt(it) => it.visibility(db), ModuleDef::Const(it) => it.visibility(db), ModuleDef::Static(it) => it.visibility(db), ModuleDef::Trait(it) => it.visibility(db), ModuleDef::TraitAlias(it) => it.visibility(db), ModuleDef::TypeAlias(it) => it.visibility(db), ModuleDef::Variant(it) => it.visibility(db), ModuleDef::Macro(it) => it.visibility(db), ModuleDef::BuiltinType(_) => Visibility::Public, } } } impl Module { /// Name of this module. pub fn name(self, db: &dyn HirDatabase) -> Option { let def_map = self.id.def_map(db.upcast()); let parent = def_map[self.id.local_id].parent?; def_map[parent].children.iter().find_map(|(name, module_id)| { if *module_id == self.id.local_id { Some(name.clone()) } else { None } }) } /// Returns the crate this module is part of. pub fn krate(self) -> Crate { Crate { id: self.id.krate() } } /// Topmost parent of this module. Every module has a `crate_root`, but some /// might be missing `krate`. This can happen if a module's file is not included /// in the module tree of any target in `Cargo.toml`. pub fn crate_root(self, db: &dyn HirDatabase) -> Module { let def_map = db.crate_def_map(self.id.krate()); Module { id: def_map.module_id(def_map.root()) } } pub fn is_crate_root(self, db: &dyn HirDatabase) -> bool { let def_map = db.crate_def_map(self.id.krate()); def_map.root() == self.id.local_id } /// Iterates over all child modules. pub fn children(self, db: &dyn HirDatabase) -> impl Iterator { let def_map = self.id.def_map(db.upcast()); let children = def_map[self.id.local_id] .children .values() .map(|module_id| Module { id: def_map.module_id(*module_id) }) .collect::>(); children.into_iter() } /// Finds a parent module. pub fn parent(self, db: &dyn HirDatabase) -> Option { // FIXME: handle block expressions as modules (their parent is in a different DefMap) let def_map = self.id.def_map(db.upcast()); let parent_id = def_map[self.id.local_id].parent?; Some(Module { id: def_map.module_id(parent_id) }) } /// Finds nearest non-block ancestor `Module` (`self` included). pub fn nearest_non_block_module(self, db: &dyn HirDatabase) -> Module { let mut id = self.id; loop { let def_map = id.def_map(db.upcast()); let origin = def_map[id.local_id].origin; if matches!(origin, ModuleOrigin::BlockExpr { .. }) { id = id.containing_module(db.upcast()).expect("block without parent module") } else { return Module { id }; } } } pub fn path_to_root(self, db: &dyn HirDatabase) -> Vec { let mut res = vec![self]; let mut curr = self; while let Some(next) = curr.parent(db) { res.push(next); curr = next } res } /// Returns a `ModuleScope`: a set of items, visible in this module. pub fn scope( self, db: &dyn HirDatabase, visible_from: Option, ) -> Vec<(Name, ScopeDef)> { self.id.def_map(db.upcast())[self.id.local_id] .scope .entries() .filter_map(|(name, def)| { if let Some(m) = visible_from { let filtered = def.filter_visibility(|vis| vis.is_visible_from(db.upcast(), m.id)); if filtered.is_none() && !def.is_none() { None } else { Some((name, filtered)) } } else { Some((name, def)) } }) .flat_map(|(name, def)| { ScopeDef::all_items(def).into_iter().map(move |item| (name.clone(), item)) }) .collect() } /// Fills `acc` with the module's diagnostics. pub fn diagnostics(self, db: &dyn HirDatabase, acc: &mut Vec) { let _p = profile::span("Module::diagnostics").detail(|| { format!("{:?}", self.name(db).map_or("".into(), |name| name.to_string())) }); let def_map = self.id.def_map(db.upcast()); for diag in def_map.diagnostics() { if diag.in_module != self.id.local_id { // FIXME: This is accidentally quadratic. continue; } emit_def_diagnostic(db, acc, diag); } for decl in self.declarations(db) { match decl { ModuleDef::Module(m) => { // Only add diagnostics from inline modules if def_map[m.id.local_id].origin.is_inline() { m.diagnostics(db, acc) } } ModuleDef::Trait(t) => { for diag in db.trait_data_with_diagnostics(t.id).1.iter() { emit_def_diagnostic(db, acc, diag); } acc.extend(decl.diagnostics(db)) } ModuleDef::Adt(adt) => { match adt { Adt::Struct(s) => { for diag in db.struct_data_with_diagnostics(s.id).1.iter() { emit_def_diagnostic(db, acc, diag); } } Adt::Union(u) => { for diag in db.union_data_with_diagnostics(u.id).1.iter() { emit_def_diagnostic(db, acc, diag); } } Adt::Enum(e) => { for v in e.variants(db) { acc.extend(ModuleDef::Variant(v).diagnostics(db)); } for diag in db.enum_data_with_diagnostics(e.id).1.iter() { emit_def_diagnostic(db, acc, diag); } } } acc.extend(decl.diagnostics(db)) } ModuleDef::Macro(m) => emit_macro_def_diagnostics(db, acc, m), _ => acc.extend(decl.diagnostics(db)), } } self.legacy_macros(db).into_iter().for_each(|m| emit_macro_def_diagnostics(db, acc, m)); let inherent_impls = db.inherent_impls_in_crate(self.id.krate()); for impl_def in self.impl_defs(db) { for diag in db.impl_data_with_diagnostics(impl_def.id).1.iter() { emit_def_diagnostic(db, acc, diag); } if inherent_impls.invalid_impls().contains(&impl_def.id) { let loc = impl_def.id.lookup(db.upcast()); let tree = loc.id.item_tree(db.upcast()); let node = &tree[loc.id.value]; let file_id = loc.id.file_id(); let ast_id_map = db.ast_id_map(file_id); acc.push(IncoherentImpl { impl_: ast_id_map.get(node.ast_id()), file_id }.into()) } for item in impl_def.items(db) { let def: DefWithBody = match item { AssocItem::Function(it) => it.into(), AssocItem::Const(it) => it.into(), AssocItem::TypeAlias(_) => continue, }; def.diagnostics(db, acc); } } } pub fn declarations(self, db: &dyn HirDatabase) -> Vec { let def_map = self.id.def_map(db.upcast()); let scope = &def_map[self.id.local_id].scope; scope .declarations() .map(ModuleDef::from) .chain(scope.unnamed_consts().map(|id| ModuleDef::Const(Const::from(id)))) .collect() } pub fn legacy_macros(self, db: &dyn HirDatabase) -> Vec { let def_map = self.id.def_map(db.upcast()); let scope = &def_map[self.id.local_id].scope; scope.legacy_macros().flat_map(|(_, it)| it).map(|&it| it.into()).collect() } pub fn impl_defs(self, db: &dyn HirDatabase) -> Vec { let def_map = self.id.def_map(db.upcast()); def_map[self.id.local_id].scope.impls().map(Impl::from).collect() } /// Finds a path that can be used to refer to the given item from within /// this module, if possible. pub fn find_use_path( self, db: &dyn DefDatabase, item: impl Into, prefer_no_std: bool, ) -> Option { hir_def::find_path::find_path(db, item.into().into(), self.into(), prefer_no_std) } /// Finds a path that can be used to refer to the given item from within /// this module, if possible. This is used for returning import paths for use-statements. pub fn find_use_path_prefixed( self, db: &dyn DefDatabase, item: impl Into, prefix_kind: PrefixKind, prefer_no_std: bool, ) -> Option { hir_def::find_path::find_path_prefixed( db, item.into().into(), self.into(), prefix_kind, prefer_no_std, ) } } fn emit_macro_def_diagnostics(db: &dyn HirDatabase, acc: &mut Vec, m: Macro) { let id = macro_id_to_def_id(db.upcast(), m.id); if let Err(e) = db.macro_def(id) { let Some(ast) = id.ast_id().left() else { never!("MacroDefError for proc-macro: {:?}", e); return; }; emit_def_diagnostic_( db, acc, &DefDiagnosticKind::MacroDefError { ast, message: e.to_string() }, ); } } fn emit_def_diagnostic(db: &dyn HirDatabase, acc: &mut Vec, diag: &DefDiagnostic) { emit_def_diagnostic_(db, acc, &diag.kind) } fn emit_def_diagnostic_( db: &dyn HirDatabase, acc: &mut Vec, diag: &DefDiagnosticKind, ) { match diag { DefDiagnosticKind::UnresolvedModule { ast: declaration, candidates } => { let decl = declaration.to_node(db.upcast()); acc.push( UnresolvedModule { decl: InFile::new(declaration.file_id, AstPtr::new(&decl)), candidates: candidates.clone(), } .into(), ) } DefDiagnosticKind::UnresolvedExternCrate { ast } => { let item = ast.to_node(db.upcast()); acc.push( UnresolvedExternCrate { decl: InFile::new(ast.file_id, AstPtr::new(&item)) }.into(), ); } DefDiagnosticKind::UnresolvedImport { id, index } => { let file_id = id.file_id(); let item_tree = id.item_tree(db.upcast()); let import = &item_tree[id.value]; let use_tree = import.use_tree_to_ast(db.upcast(), file_id, *index); acc.push( UnresolvedImport { decl: InFile::new(file_id, AstPtr::new(&use_tree)) }.into(), ); } DefDiagnosticKind::UnconfiguredCode { ast, cfg, opts } => { let item = ast.to_node(db.upcast()); acc.push( InactiveCode { node: ast.with_value(AstPtr::new(&item).into()), cfg: cfg.clone(), opts: opts.clone(), } .into(), ); } DefDiagnosticKind::UnresolvedProcMacro { ast, krate } => { let (node, precise_location, macro_name, kind) = precise_macro_call_location(ast, db); acc.push( UnresolvedProcMacro { node, precise_location, macro_name, kind, krate: *krate } .into(), ); } DefDiagnosticKind::UnresolvedMacroCall { ast, path } => { let (node, precise_location, _, _) = precise_macro_call_location(ast, db); acc.push( UnresolvedMacroCall { macro_call: node, precise_location, path: path.clone(), is_bang: matches!(ast, MacroCallKind::FnLike { .. }), } .into(), ); } DefDiagnosticKind::MacroError { ast, message } => { let (node, precise_location, _, _) = precise_macro_call_location(ast, db); acc.push(MacroError { node, precise_location, message: message.clone() }.into()); } DefDiagnosticKind::MacroExpansionParseError { ast, errors } => { let (node, precise_location, _, _) = precise_macro_call_location(ast, db); acc.push( MacroExpansionParseError { node, precise_location, errors: errors.clone() }.into(), ); } DefDiagnosticKind::UnimplementedBuiltinMacro { ast } => { let node = ast.to_node(db.upcast()); // Must have a name, otherwise we wouldn't emit it. let name = node.name().expect("unimplemented builtin macro with no name"); acc.push( UnimplementedBuiltinMacro { node: ast.with_value(SyntaxNodePtr::from(AstPtr::new(&name))), } .into(), ); } DefDiagnosticKind::InvalidDeriveTarget { ast, id } => { let node = ast.to_node(db.upcast()); let derive = node.attrs().nth(*id as usize); match derive { Some(derive) => { acc.push( InvalidDeriveTarget { node: ast.with_value(SyntaxNodePtr::from(AstPtr::new(&derive))), } .into(), ); } None => stdx::never!("derive diagnostic on item without derive attribute"), } } DefDiagnosticKind::MalformedDerive { ast, id } => { let node = ast.to_node(db.upcast()); let derive = node.attrs().nth(*id as usize); match derive { Some(derive) => { acc.push( MalformedDerive { node: ast.with_value(SyntaxNodePtr::from(AstPtr::new(&derive))), } .into(), ); } None => stdx::never!("derive diagnostic on item without derive attribute"), } } DefDiagnosticKind::MacroDefError { ast, message } => { let node = ast.to_node(db.upcast()); acc.push( MacroDefError { node: InFile::new(ast.file_id, AstPtr::new(&node)), name: node.name().map(|it| it.syntax().text_range()), message: message.clone(), } .into(), ); } } } fn precise_macro_call_location( ast: &MacroCallKind, db: &dyn HirDatabase, ) -> (InFile, Option, Option, MacroKind) { // FIXME: maybe we actually want slightly different ranges for the different macro diagnostics // - e.g. the full attribute for macro errors, but only the name for name resolution match ast { MacroCallKind::FnLike { ast_id, .. } => { let node = ast_id.to_node(db.upcast()); ( ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node))), node.path() .and_then(|it| it.segment()) .and_then(|it| it.name_ref()) .map(|it| it.syntax().text_range()), node.path().and_then(|it| it.segment()).map(|it| it.to_string()), MacroKind::ProcMacro, ) } MacroCallKind::Derive { ast_id, derive_attr_index, derive_index } => { let node = ast_id.to_node(db.upcast()); // Compute the precise location of the macro name's token in the derive // list. let token = (|| { let derive_attr = node .doc_comments_and_attrs() .nth(derive_attr_index.ast_index()) .and_then(Either::left)?; let token_tree = derive_attr.meta()?.token_tree()?; let group_by = token_tree .syntax() .children_with_tokens() .filter_map(|elem| match elem { syntax::NodeOrToken::Token(tok) => Some(tok), _ => None, }) .group_by(|t| t.kind() == T![,]); let (_, mut group) = group_by .into_iter() .filter(|&(comma, _)| !comma) .nth(*derive_index as usize)?; group.find(|t| t.kind() == T![ident]) })(); ( ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node))), token.as_ref().map(|tok| tok.text_range()), token.as_ref().map(ToString::to_string), MacroKind::Derive, ) } MacroCallKind::Attr { ast_id, invoc_attr_index, .. } => { let node = ast_id.to_node(db.upcast()); let attr = node .doc_comments_and_attrs() .nth(invoc_attr_index.ast_index()) .and_then(Either::left) .unwrap_or_else(|| { panic!("cannot find attribute #{}", invoc_attr_index.ast_index()) }); ( ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&attr))), Some(attr.syntax().text_range()), attr.path() .and_then(|path| path.segment()) .and_then(|seg| seg.name_ref()) .as_ref() .map(ToString::to_string), MacroKind::Attr, ) } } } impl HasVisibility for Module { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let def_map = self.id.def_map(db.upcast()); let module_data = &def_map[self.id.local_id]; module_data.visibility } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Field { pub(crate) parent: VariantDef, pub(crate) id: LocalFieldId, } #[derive(Debug, PartialEq, Eq)] pub enum FieldSource { Named(ast::RecordField), Pos(ast::TupleField), } impl Field { pub fn name(&self, db: &dyn HirDatabase) -> Name { self.parent.variant_data(db).fields()[self.id].name.clone() } pub fn index(&self) -> usize { u32::from(self.id.into_raw()) as usize } /// Returns the type as in the signature of the struct (i.e., with /// placeholder types for type parameters). Only use this in the context of /// the field definition. pub fn ty(&self, db: &dyn HirDatabase) -> Type { let var_id = self.parent.into(); let generic_def_id: GenericDefId = match self.parent { VariantDef::Struct(it) => it.id.into(), VariantDef::Union(it) => it.id.into(), VariantDef::Variant(it) => it.parent.id.into(), }; let substs = TyBuilder::placeholder_subst(db, generic_def_id); let ty = db.field_types(var_id)[self.id].clone().substitute(Interner, &substs); Type::new(db, var_id, ty) } pub fn layout(&self, db: &dyn HirDatabase) -> Result { layout_of_ty(db, &self.ty(db).ty, self.parent.module(db).krate().into()) } pub fn parent_def(&self, _db: &dyn HirDatabase) -> VariantDef { self.parent } } impl HasVisibility for Field { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let variant_data = self.parent.variant_data(db); let visibility = &variant_data.fields()[self.id].visibility; let parent_id: hir_def::VariantId = self.parent.into(); visibility.resolve(db.upcast(), &parent_id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Struct { pub(crate) id: StructId, } impl Struct { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn name(self, db: &dyn HirDatabase) -> Name { db.struct_data(self.id).name.clone() } pub fn fields(self, db: &dyn HirDatabase) -> Vec { db.struct_data(self.id) .variant_data .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id) } pub fn repr(self, db: &dyn HirDatabase) -> Option { db.struct_data(self.id).repr } pub fn kind(self, db: &dyn HirDatabase) -> StructKind { self.variant_data(db).kind() } fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.struct_data(self.id).variant_data.clone() } } impl HasVisibility for Struct { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.struct_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Union { pub(crate) id: UnionId, } impl Union { pub fn name(self, db: &dyn HirDatabase) -> Name { db.union_data(self.id).name.clone() } pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id) } pub fn fields(self, db: &dyn HirDatabase) -> Vec { db.union_data(self.id) .variant_data .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.union_data(self.id).variant_data.clone() } } impl HasVisibility for Union { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.union_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Enum { pub(crate) id: EnumId, } impl Enum { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn name(self, db: &dyn HirDatabase) -> Name { db.enum_data(self.id).name.clone() } pub fn variants(self, db: &dyn HirDatabase) -> Vec { db.enum_data(self.id).variants.iter().map(|(id, _)| Variant { parent: self, id }).collect() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id) } /// The type of the enum variant bodies. pub fn variant_body_ty(self, db: &dyn HirDatabase) -> Type { Type::new_for_crate( self.id.lookup(db.upcast()).container.krate(), TyBuilder::builtin(match db.enum_data(self.id).variant_body_type() { hir_def::layout::IntegerType::Pointer(sign) => match sign { true => hir_def::builtin_type::BuiltinType::Int( hir_def::builtin_type::BuiltinInt::Isize, ), false => hir_def::builtin_type::BuiltinType::Uint( hir_def::builtin_type::BuiltinUint::Usize, ), }, hir_def::layout::IntegerType::Fixed(i, sign) => match sign { true => hir_def::builtin_type::BuiltinType::Int(match i { hir_def::layout::Integer::I8 => hir_def::builtin_type::BuiltinInt::I8, hir_def::layout::Integer::I16 => hir_def::builtin_type::BuiltinInt::I16, hir_def::layout::Integer::I32 => hir_def::builtin_type::BuiltinInt::I32, hir_def::layout::Integer::I64 => hir_def::builtin_type::BuiltinInt::I64, hir_def::layout::Integer::I128 => hir_def::builtin_type::BuiltinInt::I128, }), false => hir_def::builtin_type::BuiltinType::Uint(match i { hir_def::layout::Integer::I8 => hir_def::builtin_type::BuiltinUint::U8, hir_def::layout::Integer::I16 => hir_def::builtin_type::BuiltinUint::U16, hir_def::layout::Integer::I32 => hir_def::builtin_type::BuiltinUint::U32, hir_def::layout::Integer::I64 => hir_def::builtin_type::BuiltinUint::U64, hir_def::layout::Integer::I128 => hir_def::builtin_type::BuiltinUint::U128, }), }, }), ) } pub fn is_data_carrying(self, db: &dyn HirDatabase) -> bool { self.variants(db).iter().any(|v| !matches!(v.kind(db), StructKind::Unit)) } } impl HasVisibility for Enum { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.enum_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } impl From<&Variant> for DefWithBodyId { fn from(&v: &Variant) -> Self { DefWithBodyId::VariantId(v.into()) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Variant { pub(crate) parent: Enum, pub(crate) id: LocalEnumVariantId, } impl Variant { pub fn module(self, db: &dyn HirDatabase) -> Module { self.parent.module(db) } pub fn parent_enum(self, _db: &dyn HirDatabase) -> Enum { self.parent } pub fn name(self, db: &dyn HirDatabase) -> Name { db.enum_data(self.parent.id).variants[self.id].name.clone() } pub fn fields(self, db: &dyn HirDatabase) -> Vec { self.variant_data(db) .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } pub fn kind(self, db: &dyn HirDatabase) -> StructKind { self.variant_data(db).kind() } pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.enum_data(self.parent.id).variants[self.id].variant_data.clone() } pub fn value(self, db: &dyn HirDatabase) -> Option { self.source(db)?.value.expr() } pub fn eval(self, db: &dyn HirDatabase) -> Result { db.const_eval_discriminant(self.into()) } } /// Variants inherit visibility from the parent enum. impl HasVisibility for Variant { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { self.parent_enum(db).visibility(db) } } /// A Data Type #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum Adt { Struct(Struct), Union(Union), Enum(Enum), } impl_from!(Struct, Union, Enum for Adt); impl Adt { pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool { let subst = db.generic_defaults(self.into()); subst.iter().any(|ty| match ty.skip_binders().data(Interner) { GenericArgData::Ty(x) => x.is_unknown(), _ => false, }) } pub fn layout(self, db: &dyn HirDatabase) -> Result { if db.generic_params(self.into()).iter().count() != 0 { return Err(LayoutError::HasPlaceholder); } db.layout_of_adt(self.into(), Substitution::empty(Interner)) } /// Turns this ADT into a type. Any type parameters of the ADT will be /// turned into unknown types, which is good for e.g. finding the most /// general set of completions, but will not look very nice when printed. pub fn ty(self, db: &dyn HirDatabase) -> Type { let id = AdtId::from(self); Type::from_def(db, id) } /// Turns this ADT into a type with the given type parameters. This isn't /// the greatest API, FIXME find a better one. pub fn ty_with_args(self, db: &dyn HirDatabase, args: &[Type]) -> Type { let id = AdtId::from(self); let mut it = args.iter().map(|t| t.ty.clone()); let ty = TyBuilder::def_ty(db, id.into(), None) .fill(|x| { let r = it.next().unwrap_or_else(|| TyKind::Error.intern(Interner)); match x { ParamKind::Type => GenericArgData::Ty(r).intern(Interner), ParamKind::Const(ty) => unknown_const_as_generic(ty.clone()), } }) .build(); Type::new(db, id, ty) } pub fn module(self, db: &dyn HirDatabase) -> Module { match self { Adt::Struct(s) => s.module(db), Adt::Union(s) => s.module(db), Adt::Enum(e) => e.module(db), } } pub fn name(self, db: &dyn HirDatabase) -> Name { match self { Adt::Struct(s) => s.name(db), Adt::Union(u) => u.name(db), Adt::Enum(e) => e.name(db), } } /// Returns the lifetime of the DataType pub fn lifetime(&self, db: &dyn HirDatabase) -> Option { let resolver = match self { Adt::Struct(s) => s.id.resolver(db.upcast()), Adt::Union(u) => u.id.resolver(db.upcast()), Adt::Enum(e) => e.id.resolver(db.upcast()), }; resolver .generic_params() .and_then(|gp| { (&gp.lifetimes) .iter() // there should only be a single lifetime // but `Arena` requires to use an iterator .nth(0) }) .map(|arena| arena.1.clone()) } pub fn as_enum(&self) -> Option { if let Self::Enum(v) = self { Some(*v) } else { None } } } impl HasVisibility for Adt { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { match self { Adt::Struct(it) => it.visibility(db), Adt::Union(it) => it.visibility(db), Adt::Enum(it) => it.visibility(db), } } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum VariantDef { Struct(Struct), Union(Union), Variant(Variant), } impl_from!(Struct, Union, Variant for VariantDef); impl VariantDef { pub fn fields(self, db: &dyn HirDatabase) -> Vec { match self { VariantDef::Struct(it) => it.fields(db), VariantDef::Union(it) => it.fields(db), VariantDef::Variant(it) => it.fields(db), } } pub fn module(self, db: &dyn HirDatabase) -> Module { match self { VariantDef::Struct(it) => it.module(db), VariantDef::Union(it) => it.module(db), VariantDef::Variant(it) => it.module(db), } } pub fn name(&self, db: &dyn HirDatabase) -> Name { match self { VariantDef::Struct(s) => s.name(db), VariantDef::Union(u) => u.name(db), VariantDef::Variant(e) => e.name(db), } } pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc { match self { VariantDef::Struct(it) => it.variant_data(db), VariantDef::Union(it) => it.variant_data(db), VariantDef::Variant(it) => it.variant_data(db), } } } /// The defs which have a body. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum DefWithBody { Function(Function), Static(Static), Const(Const), Variant(Variant), } impl_from!(Function, Const, Static, Variant for DefWithBody); impl DefWithBody { pub fn module(self, db: &dyn HirDatabase) -> Module { match self { DefWithBody::Const(c) => c.module(db), DefWithBody::Function(f) => f.module(db), DefWithBody::Static(s) => s.module(db), DefWithBody::Variant(v) => v.module(db), } } pub fn name(self, db: &dyn HirDatabase) -> Option { match self { DefWithBody::Function(f) => Some(f.name(db)), DefWithBody::Static(s) => Some(s.name(db)), DefWithBody::Const(c) => c.name(db), DefWithBody::Variant(v) => Some(v.name(db)), } } /// Returns the type this def's body has to evaluate to. pub fn body_type(self, db: &dyn HirDatabase) -> Type { match self { DefWithBody::Function(it) => it.ret_type(db), DefWithBody::Static(it) => it.ty(db), DefWithBody::Const(it) => it.ty(db), DefWithBody::Variant(it) => it.parent.variant_body_ty(db), } } fn id(&self) -> DefWithBodyId { match self { DefWithBody::Function(it) => it.id.into(), DefWithBody::Static(it) => it.id.into(), DefWithBody::Const(it) => it.id.into(), DefWithBody::Variant(it) => it.into(), } } /// A textual representation of the HIR of this def's body for debugging purposes. pub fn debug_hir(self, db: &dyn HirDatabase) -> String { let body = db.body(self.id()); body.pretty_print(db.upcast(), self.id()) } /// A textual representation of the MIR of this def's body for debugging purposes. pub fn debug_mir(self, db: &dyn HirDatabase) -> String { let body = db.mir_body(self.id()); match body { Ok(body) => body.pretty_print(db), Err(e) => format!("error:\n{e:?}"), } } pub fn diagnostics(self, db: &dyn HirDatabase, acc: &mut Vec) { let krate = self.module(db).id.krate(); let (body, source_map) = db.body_with_source_map(self.into()); for (_, def_map) in body.blocks(db.upcast()) { for diag in def_map.diagnostics() { emit_def_diagnostic(db, acc, diag); } } for diag in source_map.diagnostics() { match diag { BodyDiagnostic::InactiveCode { node, cfg, opts } => acc.push( InactiveCode { node: node.clone(), cfg: cfg.clone(), opts: opts.clone() } .into(), ), BodyDiagnostic::MacroError { node, message } => acc.push( MacroError { node: node.clone().map(|it| it.into()), precise_location: None, message: message.to_string(), } .into(), ), BodyDiagnostic::UnresolvedProcMacro { node, krate } => acc.push( UnresolvedProcMacro { node: node.clone().map(|it| it.into()), precise_location: None, macro_name: None, kind: MacroKind::ProcMacro, krate: *krate, } .into(), ), BodyDiagnostic::UnresolvedMacroCall { node, path } => acc.push( UnresolvedMacroCall { macro_call: node.clone().map(|ast_ptr| ast_ptr.into()), precise_location: None, path: path.clone(), is_bang: true, } .into(), ), BodyDiagnostic::UnreachableLabel { node, name } => { acc.push(UnreachableLabel { node: node.clone(), name: name.clone() }.into()) } BodyDiagnostic::UndeclaredLabel { node, name } => { acc.push(UndeclaredLabel { node: node.clone(), name: name.clone() }.into()) } } } let infer = db.infer(self.into()); let source_map = Lazy::new(|| db.body_with_source_map(self.into()).1); let expr_syntax = |expr| source_map.expr_syntax(expr).expect("unexpected synthetic"); for d in &infer.diagnostics { match d { &hir_ty::InferenceDiagnostic::NoSuchField { expr } => { let field = source_map.field_syntax(expr); acc.push(NoSuchField { field }.into()) } &hir_ty::InferenceDiagnostic::MismatchedArgCount { call_expr, expected, found } => { acc.push( MismatchedArgCount { call_expr: expr_syntax(call_expr), expected, found } .into(), ) } &hir_ty::InferenceDiagnostic::PrivateField { expr, field } => { let expr = expr_syntax(expr); let field = field.into(); acc.push(PrivateField { expr, field }.into()) } &hir_ty::InferenceDiagnostic::PrivateAssocItem { id, item } => { let expr_or_pat = match id { ExprOrPatId::ExprId(expr) => expr_syntax(expr).map(Either::Left), ExprOrPatId::PatId(pat) => source_map .pat_syntax(pat) .expect("unexpected synthetic") .map(Either::Right), }; let item = item.into(); acc.push(PrivateAssocItem { expr_or_pat, item }.into()) } hir_ty::InferenceDiagnostic::ExpectedFunction { call_expr, found } => { let call_expr = expr_syntax(*call_expr); acc.push( ExpectedFunction { call: call_expr, found: Type::new(db, DefWithBodyId::from(self), found.clone()), } .into(), ) } hir_ty::InferenceDiagnostic::UnresolvedField { expr, receiver, name, method_with_same_name_exists, } => { let expr = expr_syntax(*expr); acc.push( UnresolvedField { expr, name: name.clone(), receiver: Type::new(db, DefWithBodyId::from(self), receiver.clone()), method_with_same_name_exists: *method_with_same_name_exists, } .into(), ) } hir_ty::InferenceDiagnostic::UnresolvedMethodCall { expr, receiver, name, field_with_same_name, } => { let expr = expr_syntax(*expr); acc.push( UnresolvedMethodCall { expr, name: name.clone(), receiver: Type::new(db, DefWithBodyId::from(self), receiver.clone()), field_with_same_name: field_with_same_name .clone() .map(|ty| Type::new(db, DefWithBodyId::from(self), ty)), } .into(), ) } &hir_ty::InferenceDiagnostic::BreakOutsideOfLoop { expr, is_break, bad_value_break, } => { let expr = expr_syntax(expr); acc.push(BreakOutsideOfLoop { expr, is_break, bad_value_break }.into()) } } } for (pat_or_expr, mismatch) in infer.type_mismatches() { let expr_or_pat = match pat_or_expr { ExprOrPatId::ExprId(expr) => source_map.expr_syntax(expr).map(Either::Left), // FIXME: Re-enable these once we have less false positives ExprOrPatId::PatId(_pat) => continue, #[allow(unreachable_patterns)] ExprOrPatId::PatId(pat) => source_map.pat_syntax(pat).map(Either::Right), }; let expr_or_pat = match expr_or_pat { Ok(Either::Left(expr)) => Either::Left(expr), Ok(Either::Right(InFile { file_id, value: Either::Left(pat) })) => { Either::Right(InFile { file_id, value: pat }) } Ok(Either::Right(_)) | Err(SyntheticSyntax) => continue, }; acc.push( TypeMismatch { expr_or_pat, expected: Type::new(db, DefWithBodyId::from(self), mismatch.expected.clone()), actual: Type::new(db, DefWithBodyId::from(self), mismatch.actual.clone()), } .into(), ); } for expr in hir_ty::diagnostics::missing_unsafe(db, self.into()) { match source_map.expr_syntax(expr) { Ok(expr) => acc.push(MissingUnsafe { expr }.into()), Err(SyntheticSyntax) => { // FIXME: Here and elsewhere in this file, the `expr` was // desugared, report or assert that this doesn't happen. } } } let hir_body = db.body(self.into()); if let Ok(borrowck_results) = db.borrowck(self.into()) { for borrowck_result in borrowck_results.iter() { let mir_body = &borrowck_result.mir_body; let mol = &borrowck_result.mutability_of_locals; for (binding_id, _) in hir_body.bindings.iter() { let Some(&local) = mir_body.binding_locals.get(binding_id) else { continue; }; let need_mut = &mol[local]; let local = Local { parent: self.into(), binding_id }; match (need_mut, local.is_mut(db)) { (mir::MutabilityReason::Mut { .. }, true) | (mir::MutabilityReason::Not, false) => (), (mir::MutabilityReason::Mut { spans }, false) => { for span in spans { let span: InFile = match span { mir::MirSpan::ExprId(e) => match source_map.expr_syntax(*e) { Ok(s) => s.map(|x| x.into()), Err(_) => continue, }, mir::MirSpan::PatId(p) => match source_map.pat_syntax(*p) { Ok(s) => s.map(|x| match x { Either::Left(e) => e.into(), Either::Right(e) => e.into(), }), Err(_) => continue, }, mir::MirSpan::Unknown => continue, }; acc.push(NeedMut { local, span }.into()); } } (mir::MutabilityReason::Not, true) => { if !infer.mutated_bindings_in_closure.contains(&binding_id) { let should_ignore = matches!(body[binding_id].name.as_str(), Some(x) if x.starts_with("_")); if !should_ignore { acc.push(UnusedMut { local }.into()) } } } } } } } for diagnostic in BodyValidationDiagnostic::collect(db, self.into()) { match diagnostic { BodyValidationDiagnostic::RecordMissingFields { record, variant, missed_fields, } => { let variant_data = variant.variant_data(db.upcast()); let missed_fields = missed_fields .into_iter() .map(|idx| variant_data.fields()[idx].name.clone()) .collect(); match record { Either::Left(record_expr) => match source_map.expr_syntax(record_expr) { Ok(source_ptr) => { let root = source_ptr.file_syntax(db.upcast()); if let ast::Expr::RecordExpr(record_expr) = &source_ptr.value.to_node(&root) { if record_expr.record_expr_field_list().is_some() { acc.push( MissingFields { file: source_ptr.file_id, field_list_parent: Either::Left(AstPtr::new( record_expr, )), field_list_parent_path: record_expr .path() .map(|path| AstPtr::new(&path)), missed_fields, } .into(), ) } } } Err(SyntheticSyntax) => (), }, Either::Right(record_pat) => match source_map.pat_syntax(record_pat) { Ok(source_ptr) => { if let Some(expr) = source_ptr.value.as_ref().left() { let root = source_ptr.file_syntax(db.upcast()); if let ast::Pat::RecordPat(record_pat) = expr.to_node(&root) { if record_pat.record_pat_field_list().is_some() { acc.push( MissingFields { file: source_ptr.file_id, field_list_parent: Either::Right(AstPtr::new( &record_pat, )), field_list_parent_path: record_pat .path() .map(|path| AstPtr::new(&path)), missed_fields, } .into(), ) } } } } Err(SyntheticSyntax) => (), }, } } BodyValidationDiagnostic::ReplaceFilterMapNextWithFindMap { method_call_expr } => { if let Ok(next_source_ptr) = source_map.expr_syntax(method_call_expr) { acc.push( ReplaceFilterMapNextWithFindMap { file: next_source_ptr.file_id, next_expr: next_source_ptr.value, } .into(), ); } } BodyValidationDiagnostic::MissingMatchArms { match_expr, uncovered_patterns } => { match source_map.expr_syntax(match_expr) { Ok(source_ptr) => { let root = source_ptr.file_syntax(db.upcast()); if let ast::Expr::MatchExpr(match_expr) = &source_ptr.value.to_node(&root) { if let Some(scrut_expr) = match_expr.expr() { acc.push( MissingMatchArms { scrutinee_expr: InFile::new( source_ptr.file_id, AstPtr::new(&scrut_expr), ), uncovered_patterns, } .into(), ); } } } Err(SyntheticSyntax) => (), } } } } let def: ModuleDef = match self { DefWithBody::Function(it) => it.into(), DefWithBody::Static(it) => it.into(), DefWithBody::Const(it) => it.into(), DefWithBody::Variant(it) => it.into(), }; for diag in hir_ty::diagnostics::incorrect_case(db, krate, def.into()) { acc.push(diag.into()) } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Function { pub(crate) id: FunctionId, } impl Function { pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.lookup(db.upcast()).module(db.upcast()).into() } pub fn name(self, db: &dyn HirDatabase) -> Name { db.function_data(self.id).name.clone() } /// Get this function's return type pub fn ret_type(self, db: &dyn HirDatabase) -> Type { let resolver = self.id.resolver(db.upcast()); let substs = TyBuilder::placeholder_subst(db, self.id); let callable_sig = db.callable_item_signature(self.id.into()).substitute(Interner, &substs); let ty = callable_sig.ret().clone(); Type::new_with_resolver_inner(db, &resolver, ty) } pub fn async_ret_type(self, db: &dyn HirDatabase) -> Option { if !self.is_async(db) { return None; } let resolver = self.id.resolver(db.upcast()); let substs = TyBuilder::placeholder_subst(db, self.id); let callable_sig = db.callable_item_signature(self.id.into()).substitute(Interner, &substs); let ret_ty = callable_sig.ret().clone(); for pred in ret_ty.impl_trait_bounds(db).into_iter().flatten() { if let WhereClause::AliasEq(output_eq) = pred.into_value_and_skipped_binders().0 { return Type::new_with_resolver_inner(db, &resolver, output_eq.ty).into(); } } never!("Async fn ret_type should be impl Future"); None } pub fn has_self_param(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).has_self_param() } pub fn self_param(self, db: &dyn HirDatabase) -> Option { self.has_self_param(db).then_some(SelfParam { func: self.id }) } pub fn assoc_fn_params(self, db: &dyn HirDatabase) -> Vec { let environment = db.trait_environment(self.id.into()); let substs = TyBuilder::placeholder_subst(db, self.id); let callable_sig = db.callable_item_signature(self.id.into()).substitute(Interner, &substs); callable_sig .params() .iter() .enumerate() .map(|(idx, ty)| { let ty = Type { env: environment.clone(), ty: ty.clone() }; Param { func: self, ty, idx } }) .collect() } pub fn num_params(self, db: &dyn HirDatabase) -> usize { db.function_data(self.id).params.len() } pub fn method_params(self, db: &dyn HirDatabase) -> Option> { if self.self_param(db).is_none() { return None; } Some(self.params_without_self(db)) } pub fn params_without_self(self, db: &dyn HirDatabase) -> Vec { let environment = db.trait_environment(self.id.into()); let substs = TyBuilder::placeholder_subst(db, self.id); let callable_sig = db.callable_item_signature(self.id.into()).substitute(Interner, &substs); let skip = if db.function_data(self.id).has_self_param() { 1 } else { 0 }; callable_sig .params() .iter() .enumerate() .skip(skip) .map(|(idx, ty)| { let ty = Type { env: environment.clone(), ty: ty.clone() }; Param { func: self, ty, idx } }) .collect() } pub fn is_const(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).has_const_kw() } pub fn is_async(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).has_async_kw() } pub fn is_unsafe_to_call(self, db: &dyn HirDatabase) -> bool { hir_ty::is_fn_unsafe_to_call(db, self.id) } /// Whether this function declaration has a definition. /// /// This is false in the case of required (not provided) trait methods. pub fn has_body(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).has_body() } pub fn as_proc_macro(self, db: &dyn HirDatabase) -> Option { let function_data = db.function_data(self.id); let attrs = &function_data.attrs; // FIXME: Store this in FunctionData flags? if !(attrs.is_proc_macro() || attrs.is_proc_macro_attribute() || attrs.is_proc_macro_derive()) { return None; } let loc = self.id.lookup(db.upcast()); let def_map = db.crate_def_map(loc.krate(db).into()); def_map.fn_as_proc_macro(self.id).map(|id| Macro { id: id.into() }) } pub fn eval(self, db: &dyn HirDatabase) -> Result<(), MirEvalError> { let body = db .mir_body(self.id.into()) .map_err(|e| MirEvalError::MirLowerError(self.id.into(), e))?; interpret_mir(db, &body, Substitution::empty(Interner), false)?; Ok(()) } } // Note: logically, this belongs to `hir_ty`, but we are not using it there yet. #[derive(Clone, Copy, PartialEq, Eq)] pub enum Access { Shared, Exclusive, Owned, } impl From for Access { fn from(mutability: hir_ty::Mutability) -> Access { match mutability { hir_ty::Mutability::Not => Access::Shared, hir_ty::Mutability::Mut => Access::Exclusive, } } } #[derive(Clone, Debug)] pub struct Param { func: Function, /// The index in parameter list, including self parameter. idx: usize, ty: Type, } impl Param { pub fn ty(&self) -> &Type { &self.ty } pub fn name(&self, db: &dyn HirDatabase) -> Option { Some(self.as_local(db)?.name(db)) } pub fn as_local(&self, db: &dyn HirDatabase) -> Option { let parent = DefWithBodyId::FunctionId(self.func.into()); let body = db.body(parent); let pat_id = body.params[self.idx]; if let Pat::Bind { id, .. } = &body[pat_id] { Some(Local { parent, binding_id: *id }) } else { None } } pub fn pattern_source(&self, db: &dyn HirDatabase) -> Option { self.source(db).and_then(|p| p.value.pat()) } pub fn source(&self, db: &dyn HirDatabase) -> Option> { let InFile { file_id, value } = self.func.source(db)?; let params = value.param_list()?; if params.self_param().is_some() { params.params().nth(self.idx.checked_sub(1)?) } else { params.params().nth(self.idx) } .map(|value| InFile { file_id, value }) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct SelfParam { func: FunctionId, } impl SelfParam { pub fn access(self, db: &dyn HirDatabase) -> Access { let func_data = db.function_data(self.func); func_data .params .first() .map(|param| match &**param { TypeRef::Reference(.., mutability) => match mutability { hir_def::type_ref::Mutability::Shared => Access::Shared, hir_def::type_ref::Mutability::Mut => Access::Exclusive, }, _ => Access::Owned, }) .unwrap_or(Access::Owned) } pub fn display(self, db: &dyn HirDatabase) -> &'static str { match self.access(db) { Access::Shared => "&self", Access::Exclusive => "&mut self", Access::Owned => "self", } } pub fn source(&self, db: &dyn HirDatabase) -> Option> { let InFile { file_id, value } = Function::from(self.func).source(db)?; value .param_list() .and_then(|params| params.self_param()) .map(|value| InFile { file_id, value }) } pub fn ty(&self, db: &dyn HirDatabase) -> Type { let substs = TyBuilder::placeholder_subst(db, self.func); let callable_sig = db.callable_item_signature(self.func.into()).substitute(Interner, &substs); let environment = db.trait_environment(self.func.into()); let ty = callable_sig.params()[0].clone(); Type { env: environment, ty } } } impl HasVisibility for Function { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.function_visibility(self.id) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Const { pub(crate) id: ConstId, } impl Const { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn name(self, db: &dyn HirDatabase) -> Option { db.const_data(self.id).name.clone() } pub fn value(self, db: &dyn HirDatabase) -> Option { self.source(db)?.value.body() } pub fn ty(self, db: &dyn HirDatabase) -> Type { let data = db.const_data(self.id); let resolver = self.id.resolver(db.upcast()); let ctx = hir_ty::TyLoweringContext::new(db, &resolver); let ty = ctx.lower_ty(&data.type_ref); Type::new_with_resolver_inner(db, &resolver, ty) } pub fn render_eval(self, db: &dyn HirDatabase) -> Result { let c = db.const_eval(self.id, Substitution::empty(Interner))?; let r = format!("{}", HexifiedConst(c).display(db)); // We want to see things like `` and `` as they are probably bug in our // implementation, but there is no need to show things like `` or `` to // the user. if r.contains("not-supported>") { return Err(ConstEvalError::MirEvalError(MirEvalError::NotSupported( "rendering complex constants".to_string(), ))); } return Ok(r); } } impl HasVisibility for Const { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.const_visibility(self.id) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Static { pub(crate) id: StaticId, } impl Static { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn name(self, db: &dyn HirDatabase) -> Name { db.static_data(self.id).name.clone() } pub fn is_mut(self, db: &dyn HirDatabase) -> bool { db.static_data(self.id).mutable } pub fn value(self, db: &dyn HirDatabase) -> Option { self.source(db)?.value.body() } pub fn ty(self, db: &dyn HirDatabase) -> Type { let data = db.static_data(self.id); let resolver = self.id.resolver(db.upcast()); let ctx = hir_ty::TyLoweringContext::new(db, &resolver); let ty = ctx.lower_ty(&data.type_ref); Type::new_with_resolver_inner(db, &resolver, ty) } } impl HasVisibility for Static { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.static_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Trait { pub(crate) id: TraitId, } impl Trait { pub fn lang(db: &dyn HirDatabase, krate: Crate, name: &Name) -> Option { db.lang_item(krate.into(), LangItem::from_name(name)?) .and_then(LangItemTarget::as_trait) .map(Into::into) } pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn name(self, db: &dyn HirDatabase) -> Name { db.trait_data(self.id).name.clone() } pub fn items(self, db: &dyn HirDatabase) -> Vec { db.trait_data(self.id).items.iter().map(|(_name, it)| (*it).into()).collect() } pub fn items_with_supertraits(self, db: &dyn HirDatabase) -> Vec { let traits = all_super_traits(db.upcast(), self.into()); traits.iter().flat_map(|tr| Trait::from(*tr).items(db)).collect() } pub fn is_auto(self, db: &dyn HirDatabase) -> bool { db.trait_data(self.id).is_auto } pub fn is_unsafe(&self, db: &dyn HirDatabase) -> bool { db.trait_data(self.id).is_unsafe } pub fn type_or_const_param_count( &self, db: &dyn HirDatabase, count_required_only: bool, ) -> usize { db.generic_params(GenericDefId::from(self.id)) .type_or_consts .iter() .filter(|(_, ty)| match ty { TypeOrConstParamData::TypeParamData(ty) if ty.provenance != TypeParamProvenance::TypeParamList => { false } _ => true, }) .filter(|(_, ty)| !count_required_only || !ty.has_default()) .count() } } impl HasVisibility for Trait { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.trait_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct TraitAlias { pub(crate) id: TraitAliasId, } impl TraitAlias { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn name(self, db: &dyn HirDatabase) -> Name { db.trait_alias_data(self.id).name.clone() } } impl HasVisibility for TraitAlias { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.trait_alias_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct TypeAlias { pub(crate) id: TypeAliasId, } impl TypeAlias { pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool { let subst = db.generic_defaults(self.id.into()); subst.iter().any(|ty| match ty.skip_binders().data(Interner) { GenericArgData::Ty(x) => x.is_unknown(), _ => false, }) } pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn type_ref(self, db: &dyn HirDatabase) -> Option { db.type_alias_data(self.id).type_ref.as_deref().cloned() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id) } pub fn name(self, db: &dyn HirDatabase) -> Name { db.type_alias_data(self.id).name.clone() } } impl HasVisibility for TypeAlias { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let function_data = db.type_alias_data(self.id); let visibility = &function_data.visibility; visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct BuiltinType { pub(crate) inner: hir_def::builtin_type::BuiltinType, } impl BuiltinType { pub fn str() -> BuiltinType { BuiltinType { inner: hir_def::builtin_type::BuiltinType::Str } } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::new_for_crate(db.crate_graph().iter().next().unwrap(), TyBuilder::builtin(self.inner)) } pub fn name(self) -> Name { self.inner.as_name() } pub fn is_int(&self) -> bool { matches!(self.inner, hir_def::builtin_type::BuiltinType::Int(_)) } pub fn is_uint(&self) -> bool { matches!(self.inner, hir_def::builtin_type::BuiltinType::Uint(_)) } pub fn is_float(&self) -> bool { matches!(self.inner, hir_def::builtin_type::BuiltinType::Float(_)) } pub fn is_char(&self) -> bool { matches!(self.inner, hir_def::builtin_type::BuiltinType::Char) } pub fn is_bool(&self) -> bool { matches!(self.inner, hir_def::builtin_type::BuiltinType::Bool) } pub fn is_str(&self) -> bool { matches!(self.inner, hir_def::builtin_type::BuiltinType::Str) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum MacroKind { /// `macro_rules!` or Macros 2.0 macro. Declarative, /// A built-in or custom derive. Derive, /// A built-in function-like macro. BuiltIn, /// A procedural attribute macro. Attr, /// A function-like procedural macro. ProcMacro, } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Macro { pub(crate) id: MacroId, } impl Macro { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.module(db.upcast()) } } pub fn name(self, db: &dyn HirDatabase) -> Name { match self.id { MacroId::Macro2Id(id) => db.macro2_data(id).name.clone(), MacroId::MacroRulesId(id) => db.macro_rules_data(id).name.clone(), MacroId::ProcMacroId(id) => db.proc_macro_data(id).name.clone(), } } pub fn is_macro_export(self, db: &dyn HirDatabase) -> bool { matches!(self.id, MacroId::MacroRulesId(id) if db.macro_rules_data(id).macro_export) } pub fn kind(&self, db: &dyn HirDatabase) -> MacroKind { match self.id { MacroId::Macro2Id(it) => match it.lookup(db.upcast()).expander { MacroExpander::Declarative => MacroKind::Declarative, MacroExpander::BuiltIn(_) | MacroExpander::BuiltInEager(_) => MacroKind::BuiltIn, MacroExpander::BuiltInAttr(_) => MacroKind::Attr, MacroExpander::BuiltInDerive(_) => MacroKind::Derive, }, MacroId::MacroRulesId(it) => match it.lookup(db.upcast()).expander { MacroExpander::Declarative => MacroKind::Declarative, MacroExpander::BuiltIn(_) | MacroExpander::BuiltInEager(_) => MacroKind::BuiltIn, MacroExpander::BuiltInAttr(_) => MacroKind::Attr, MacroExpander::BuiltInDerive(_) => MacroKind::Derive, }, MacroId::ProcMacroId(it) => match it.lookup(db.upcast()).kind { ProcMacroKind::CustomDerive => MacroKind::Derive, ProcMacroKind::FuncLike => MacroKind::ProcMacro, ProcMacroKind::Attr => MacroKind::Attr, }, } } pub fn is_fn_like(&self, db: &dyn HirDatabase) -> bool { match self.kind(db) { MacroKind::Declarative | MacroKind::BuiltIn | MacroKind::ProcMacro => true, MacroKind::Attr | MacroKind::Derive => false, } } pub fn is_builtin_derive(&self, db: &dyn HirDatabase) -> bool { match self.id { MacroId::Macro2Id(it) => { matches!(it.lookup(db.upcast()).expander, MacroExpander::BuiltInDerive(_)) } MacroId::MacroRulesId(it) => { matches!(it.lookup(db.upcast()).expander, MacroExpander::BuiltInDerive(_)) } MacroId::ProcMacroId(_) => false, } } pub fn is_attr(&self, db: &dyn HirDatabase) -> bool { matches!(self.kind(db), MacroKind::Attr) } pub fn is_derive(&self, db: &dyn HirDatabase) -> bool { matches!(self.kind(db), MacroKind::Derive) } } impl HasVisibility for Macro { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { match self.id { MacroId::Macro2Id(id) => { let data = db.macro2_data(id); let visibility = &data.visibility; visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } MacroId::MacroRulesId(_) => Visibility::Public, MacroId::ProcMacroId(_) => Visibility::Public, } } } #[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)] pub enum ItemInNs { Types(ModuleDef), Values(ModuleDef), Macros(Macro), } impl From for ItemInNs { fn from(it: Macro) -> Self { Self::Macros(it) } } impl From for ItemInNs { fn from(module_def: ModuleDef) -> Self { match module_def { ModuleDef::Static(_) | ModuleDef::Const(_) | ModuleDef::Function(_) => { ItemInNs::Values(module_def) } _ => ItemInNs::Types(module_def), } } } impl ItemInNs { pub fn as_module_def(self) -> Option { match self { ItemInNs::Types(id) | ItemInNs::Values(id) => Some(id), ItemInNs::Macros(_) => None, } } /// Returns the crate defining this item (or `None` if `self` is built-in). pub fn krate(&self, db: &dyn HirDatabase) -> Option { match self { ItemInNs::Types(did) | ItemInNs::Values(did) => did.module(db).map(|m| m.krate()), ItemInNs::Macros(id) => Some(id.module(db).krate()), } } pub fn attrs(&self, db: &dyn HirDatabase) -> Option { match self { ItemInNs::Types(it) | ItemInNs::Values(it) => it.attrs(db), ItemInNs::Macros(it) => Some(it.attrs(db)), } } } /// Invariant: `inner.as_assoc_item(db).is_some()` /// We do not actively enforce this invariant. #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum AssocItem { Function(Function), Const(Const), TypeAlias(TypeAlias), } #[derive(Debug, Clone)] pub enum AssocItemContainer { Trait(Trait), Impl(Impl), } pub trait AsAssocItem { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option; } impl AsAssocItem for Function { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::Function, self.id) } } impl AsAssocItem for Const { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::Const, self.id) } } impl AsAssocItem for TypeAlias { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::TypeAlias, self.id) } } impl AsAssocItem for ModuleDef { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { match self { ModuleDef::Function(it) => it.as_assoc_item(db), ModuleDef::Const(it) => it.as_assoc_item(db), ModuleDef::TypeAlias(it) => it.as_assoc_item(db), _ => None, } } } impl AsAssocItem for DefWithBody { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { match self { DefWithBody::Function(it) => it.as_assoc_item(db), DefWithBody::Const(it) => it.as_assoc_item(db), DefWithBody::Static(_) | DefWithBody::Variant(_) => None, } } } fn as_assoc_item(db: &dyn HirDatabase, ctor: CTOR, id: ID) -> Option where ID: Lookup>, DEF: From, CTOR: FnOnce(DEF) -> AssocItem, AST: ItemTreeNode, { match id.lookup(db.upcast()).container { ItemContainerId::TraitId(_) | ItemContainerId::ImplId(_) => Some(ctor(DEF::from(id))), ItemContainerId::ModuleId(_) | ItemContainerId::ExternBlockId(_) => None, } } impl AssocItem { pub fn name(self, db: &dyn HirDatabase) -> Option { match self { AssocItem::Function(it) => Some(it.name(db)), AssocItem::Const(it) => it.name(db), AssocItem::TypeAlias(it) => Some(it.name(db)), } } pub fn module(self, db: &dyn HirDatabase) -> Module { match self { AssocItem::Function(f) => f.module(db), AssocItem::Const(c) => c.module(db), AssocItem::TypeAlias(t) => t.module(db), } } pub fn container(self, db: &dyn HirDatabase) -> AssocItemContainer { let container = match self { AssocItem::Function(it) => it.id.lookup(db.upcast()).container, AssocItem::Const(it) => it.id.lookup(db.upcast()).container, AssocItem::TypeAlias(it) => it.id.lookup(db.upcast()).container, }; match container { ItemContainerId::TraitId(id) => AssocItemContainer::Trait(id.into()), ItemContainerId::ImplId(id) => AssocItemContainer::Impl(id.into()), ItemContainerId::ModuleId(_) | ItemContainerId::ExternBlockId(_) => { panic!("invalid AssocItem") } } } pub fn containing_trait(self, db: &dyn HirDatabase) -> Option { match self.container(db) { AssocItemContainer::Trait(t) => Some(t), _ => None, } } pub fn containing_trait_impl(self, db: &dyn HirDatabase) -> Option { match self.container(db) { AssocItemContainer::Impl(i) => i.trait_(db), _ => None, } } pub fn containing_trait_or_trait_impl(self, db: &dyn HirDatabase) -> Option { match self.container(db) { AssocItemContainer::Trait(t) => Some(t), AssocItemContainer::Impl(i) => i.trait_(db), } } } impl HasVisibility for AssocItem { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { match self { AssocItem::Function(f) => f.visibility(db), AssocItem::Const(c) => c.visibility(db), AssocItem::TypeAlias(t) => t.visibility(db), } } } impl From for ModuleDef { fn from(assoc: AssocItem) -> Self { match assoc { AssocItem::Function(it) => ModuleDef::Function(it), AssocItem::Const(it) => ModuleDef::Const(it), AssocItem::TypeAlias(it) => ModuleDef::TypeAlias(it), } } } #[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)] pub enum GenericDef { Function(Function), Adt(Adt), Trait(Trait), TraitAlias(TraitAlias), TypeAlias(TypeAlias), Impl(Impl), // enum variants cannot have generics themselves, but their parent enums // can, and this makes some code easier to write Variant(Variant), // consts can have type parameters from their parents (i.e. associated consts of traits) Const(Const), } impl_from!( Function, Adt(Struct, Enum, Union), Trait, TraitAlias, TypeAlias, Impl, Variant, Const for GenericDef ); impl GenericDef { pub fn params(self, db: &dyn HirDatabase) -> Vec { let generics = db.generic_params(self.into()); let ty_params = generics.type_or_consts.iter().map(|(local_id, _)| { let toc = TypeOrConstParam { id: TypeOrConstParamId { parent: self.into(), local_id } }; match toc.split(db) { Either::Left(x) => GenericParam::ConstParam(x), Either::Right(x) => GenericParam::TypeParam(x), } }); let lt_params = generics .lifetimes .iter() .map(|(local_id, _)| LifetimeParam { id: LifetimeParamId { parent: self.into(), local_id }, }) .map(GenericParam::LifetimeParam); lt_params.chain(ty_params).collect() } pub fn type_params(self, db: &dyn HirDatabase) -> Vec { let generics = db.generic_params(self.into()); generics .type_or_consts .iter() .map(|(local_id, _)| TypeOrConstParam { id: TypeOrConstParamId { parent: self.into(), local_id }, }) .collect() } } /// A single local definition. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct Local { pub(crate) parent: DefWithBodyId, pub(crate) binding_id: BindingId, } pub struct LocalSource { pub local: Local, pub source: InFile>, } impl LocalSource { pub fn as_ident_pat(&self) -> Option<&ast::IdentPat> { match &self.source.value { Either::Left(x) => Some(x), Either::Right(_) => None, } } pub fn into_ident_pat(self) -> Option { match self.source.value { Either::Left(x) => Some(x), Either::Right(_) => None, } } pub fn original_file(&self, db: &dyn HirDatabase) -> FileId { self.source.file_id.original_file(db.upcast()) } pub fn name(&self) -> Option { self.source.value.name() } pub fn syntax(&self) -> &SyntaxNode { self.source.value.syntax() } pub fn syntax_ptr(self) -> InFile { self.source.map(|x| SyntaxNodePtr::new(x.syntax())) } } impl Local { pub fn is_param(self, db: &dyn HirDatabase) -> bool { let src = self.primary_source(db); match src.source.value { Either::Left(pat) => pat .syntax() .ancestors() .map(|it| it.kind()) .take_while(|&kind| ast::Pat::can_cast(kind) || ast::Param::can_cast(kind)) .any(ast::Param::can_cast), Either::Right(_) => true, } } pub fn as_self_param(self, db: &dyn HirDatabase) -> Option { match self.parent { DefWithBodyId::FunctionId(func) if self.is_self(db) => Some(SelfParam { func }), _ => None, } } pub fn name(self, db: &dyn HirDatabase) -> Name { let body = db.body(self.parent); body[self.binding_id].name.clone() } pub fn is_self(self, db: &dyn HirDatabase) -> bool { self.name(db) == name![self] } pub fn is_mut(self, db: &dyn HirDatabase) -> bool { let body = db.body(self.parent); body[self.binding_id].mode == BindingAnnotation::Mutable } pub fn is_ref(self, db: &dyn HirDatabase) -> bool { let body = db.body(self.parent); matches!(body[self.binding_id].mode, BindingAnnotation::Ref | BindingAnnotation::RefMut) } pub fn parent(self, _db: &dyn HirDatabase) -> DefWithBody { self.parent.into() } pub fn module(self, db: &dyn HirDatabase) -> Module { self.parent(db).module(db) } pub fn ty(self, db: &dyn HirDatabase) -> Type { let def = self.parent; let infer = db.infer(def); let ty = infer[self.binding_id].clone(); Type::new(db, def, ty) } /// All definitions for this local. Example: `let (a$0, _) | (_, a$0) = x;` pub fn sources(self, db: &dyn HirDatabase) -> Vec { let (body, source_map) = db.body_with_source_map(self.parent); body[self.binding_id] .definitions .iter() .map(|&definition| { let src = source_map.pat_syntax(definition).unwrap(); // Hmm... let root = src.file_syntax(db.upcast()); src.map(|ast| match ast { // Suspicious unwrap Either::Left(it) => Either::Left(it.cast().unwrap().to_node(&root)), Either::Right(it) => Either::Right(it.to_node(&root)), }) }) .map(|source| LocalSource { local: self, source }) .collect() } /// The leftmost definition for this local. Example: `let (a$0, _) | (_, a) = x;` pub fn primary_source(self, db: &dyn HirDatabase) -> LocalSource { let all_sources = self.sources(db); all_sources.into_iter().next().unwrap() } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct DeriveHelper { pub(crate) derive: MacroId, pub(crate) idx: u32, } impl DeriveHelper { pub fn derive(&self) -> Macro { Macro { id: self.derive } } pub fn name(&self, db: &dyn HirDatabase) -> Name { match self.derive { MacroId::Macro2Id(it) => db .macro2_data(it) .helpers .as_deref() .and_then(|it| it.get(self.idx as usize)) .cloned(), MacroId::MacroRulesId(_) => None, MacroId::ProcMacroId(proc_macro) => db .proc_macro_data(proc_macro) .helpers .as_deref() .and_then(|it| it.get(self.idx as usize)) .cloned(), } .unwrap_or_else(|| Name::missing()) } } // FIXME: Wrong name? This is could also be a registered attribute #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct BuiltinAttr { krate: Option, idx: u32, } impl BuiltinAttr { // FIXME: consider crates\hir_def\src\nameres\attr_resolution.rs? pub(crate) fn by_name(db: &dyn HirDatabase, krate: Crate, name: &str) -> Option { if let builtin @ Some(_) = Self::builtin(name) { return builtin; } let idx = db.crate_def_map(krate.id).registered_attrs().iter().position(|it| it == name)? as u32; Some(BuiltinAttr { krate: Some(krate.id), idx }) } fn builtin(name: &str) -> Option { hir_def::attr::builtin::find_builtin_attr_idx(name) .map(|idx| BuiltinAttr { krate: None, idx: idx as u32 }) } pub fn name(&self, db: &dyn HirDatabase) -> SmolStr { // FIXME: Return a `Name` here match self.krate { Some(krate) => db.crate_def_map(krate).registered_attrs()[self.idx as usize].clone(), None => SmolStr::new(hir_def::attr::builtin::INERT_ATTRIBUTES[self.idx as usize].name), } } pub fn template(&self, _: &dyn HirDatabase) -> Option { match self.krate { Some(_) => None, None => Some(hir_def::attr::builtin::INERT_ATTRIBUTES[self.idx as usize].template), } } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct ToolModule { krate: Option, idx: u32, } impl ToolModule { // FIXME: consider crates\hir_def\src\nameres\attr_resolution.rs? pub(crate) fn by_name(db: &dyn HirDatabase, krate: Crate, name: &str) -> Option { if let builtin @ Some(_) = Self::builtin(name) { return builtin; } let idx = db.crate_def_map(krate.id).registered_tools().iter().position(|it| it == name)? as u32; Some(ToolModule { krate: Some(krate.id), idx }) } fn builtin(name: &str) -> Option { hir_def::attr::builtin::TOOL_MODULES .iter() .position(|&tool| tool == name) .map(|idx| ToolModule { krate: None, idx: idx as u32 }) } pub fn name(&self, db: &dyn HirDatabase) -> SmolStr { // FIXME: Return a `Name` here match self.krate { Some(krate) => db.crate_def_map(krate).registered_tools()[self.idx as usize].clone(), None => SmolStr::new(hir_def::attr::builtin::TOOL_MODULES[self.idx as usize]), } } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct Label { pub(crate) parent: DefWithBodyId, pub(crate) label_id: LabelId, } impl Label { pub fn module(self, db: &dyn HirDatabase) -> Module { self.parent(db).module(db) } pub fn parent(self, _db: &dyn HirDatabase) -> DefWithBody { self.parent.into() } pub fn name(self, db: &dyn HirDatabase) -> Name { let body = db.body(self.parent); body[self.label_id].name.clone() } pub fn source(self, db: &dyn HirDatabase) -> InFile { let (_body, source_map) = db.body_with_source_map(self.parent); let src = source_map.label_syntax(self.label_id); let root = src.file_syntax(db.upcast()); src.map(|ast| ast.to_node(&root)) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum GenericParam { TypeParam(TypeParam), ConstParam(ConstParam), LifetimeParam(LifetimeParam), } impl_from!(TypeParam, ConstParam, LifetimeParam for GenericParam); impl GenericParam { pub fn module(self, db: &dyn HirDatabase) -> Module { match self { GenericParam::TypeParam(it) => it.module(db), GenericParam::ConstParam(it) => it.module(db), GenericParam::LifetimeParam(it) => it.module(db), } } pub fn name(self, db: &dyn HirDatabase) -> Name { match self { GenericParam::TypeParam(it) => it.name(db), GenericParam::ConstParam(it) => it.name(db), GenericParam::LifetimeParam(it) => it.name(db), } } pub fn parent(self) -> GenericDef { match self { GenericParam::TypeParam(it) => it.id.parent().into(), GenericParam::ConstParam(it) => it.id.parent().into(), GenericParam::LifetimeParam(it) => it.id.parent.into(), } } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct TypeParam { pub(crate) id: TypeParamId, } impl TypeParam { pub fn merge(self) -> TypeOrConstParam { TypeOrConstParam { id: self.id.into() } } pub fn name(self, db: &dyn HirDatabase) -> Name { self.merge().name(db) } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.parent().module(db.upcast()).into() } /// Is this type parameter implicitly introduced (eg. `Self` in a trait or an `impl Trait` /// argument)? pub fn is_implicit(self, db: &dyn HirDatabase) -> bool { let params = db.generic_params(self.id.parent()); let data = ¶ms.type_or_consts[self.id.local_id()]; match data.type_param().unwrap().provenance { hir_def::generics::TypeParamProvenance::TypeParamList => false, hir_def::generics::TypeParamProvenance::TraitSelf | hir_def::generics::TypeParamProvenance::ArgumentImplTrait => true, } } pub fn ty(self, db: &dyn HirDatabase) -> Type { let resolver = self.id.parent().resolver(db.upcast()); let ty = TyKind::Placeholder(hir_ty::to_placeholder_idx(db, self.id.into())).intern(Interner); Type::new_with_resolver_inner(db, &resolver, ty) } /// FIXME: this only lists trait bounds from the item defining the type /// parameter, not additional bounds that might be added e.g. by a method if /// the parameter comes from an impl! pub fn trait_bounds(self, db: &dyn HirDatabase) -> Vec { db.generic_predicates_for_param(self.id.parent(), self.id.into(), None) .iter() .filter_map(|pred| match &pred.skip_binders().skip_binders() { hir_ty::WhereClause::Implemented(trait_ref) => { Some(Trait::from(trait_ref.hir_trait_id())) } _ => None, }) .collect() } pub fn default(self, db: &dyn HirDatabase) -> Option { let params = db.generic_defaults(self.id.parent()); let local_idx = hir_ty::param_idx(db, self.id.into())?; let resolver = self.id.parent().resolver(db.upcast()); let ty = params.get(local_idx)?.clone(); let subst = TyBuilder::placeholder_subst(db, self.id.parent()); let ty = ty.substitute(Interner, &subst); match ty.data(Interner) { GenericArgData::Ty(x) => Some(Type::new_with_resolver_inner(db, &resolver, x.clone())), _ => None, } } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct LifetimeParam { pub(crate) id: LifetimeParamId, } impl LifetimeParam { pub fn name(self, db: &dyn HirDatabase) -> Name { let params = db.generic_params(self.id.parent); params.lifetimes[self.id.local_id].name.clone() } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.parent.module(db.upcast()).into() } pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef { self.id.parent.into() } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct ConstParam { pub(crate) id: ConstParamId, } impl ConstParam { pub fn merge(self) -> TypeOrConstParam { TypeOrConstParam { id: self.id.into() } } pub fn name(self, db: &dyn HirDatabase) -> Name { let params = db.generic_params(self.id.parent()); match params.type_or_consts[self.id.local_id()].name() { Some(x) => x.clone(), None => { never!(); Name::missing() } } } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.parent().module(db.upcast()).into() } pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef { self.id.parent().into() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::new(db, self.id.parent(), db.const_param_ty(self.id)) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct TypeOrConstParam { pub(crate) id: TypeOrConstParamId, } impl TypeOrConstParam { pub fn name(self, db: &dyn HirDatabase) -> Name { let params = db.generic_params(self.id.parent); match params.type_or_consts[self.id.local_id].name() { Some(n) => n.clone(), _ => Name::missing(), } } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.parent.module(db.upcast()).into() } pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef { self.id.parent.into() } pub fn split(self, db: &dyn HirDatabase) -> Either { let params = db.generic_params(self.id.parent); match ¶ms.type_or_consts[self.id.local_id] { hir_def::generics::TypeOrConstParamData::TypeParamData(_) => { Either::Right(TypeParam { id: TypeParamId::from_unchecked(self.id) }) } hir_def::generics::TypeOrConstParamData::ConstParamData(_) => { Either::Left(ConstParam { id: ConstParamId::from_unchecked(self.id) }) } } } pub fn ty(self, db: &dyn HirDatabase) -> Type { match self.split(db) { Either::Left(x) => x.ty(db), Either::Right(x) => x.ty(db), } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Impl { pub(crate) id: ImplId, } impl Impl { pub fn all_in_crate(db: &dyn HirDatabase, krate: Crate) -> Vec { let inherent = db.inherent_impls_in_crate(krate.id); let trait_ = db.trait_impls_in_crate(krate.id); inherent.all_impls().chain(trait_.all_impls()).map(Self::from).collect() } pub fn all_for_type(db: &dyn HirDatabase, Type { ty, env }: Type) -> Vec { let def_crates = match method_resolution::def_crates(db, &ty, env.krate) { Some(def_crates) => def_crates, None => return Vec::new(), }; let filter = |impl_def: &Impl| { let self_ty = impl_def.self_ty(db); let rref = self_ty.remove_ref(); ty.equals_ctor(rref.as_ref().map_or(&self_ty.ty, |it| &it.ty)) }; let fp = TyFingerprint::for_inherent_impl(&ty); let fp = match fp { Some(fp) => fp, None => return Vec::new(), }; let mut all = Vec::new(); def_crates.iter().for_each(|&id| { all.extend( db.inherent_impls_in_crate(id) .for_self_ty(&ty) .iter() .cloned() .map(Self::from) .filter(filter), ) }); for id in def_crates .iter() .flat_map(|&id| Crate { id }.transitive_reverse_dependencies(db)) .map(|Crate { id }| id) .chain(def_crates.iter().copied()) .unique() { all.extend( db.trait_impls_in_crate(id) .for_self_ty_without_blanket_impls(fp) .map(Self::from) .filter(filter), ); } all } pub fn all_for_trait(db: &dyn HirDatabase, trait_: Trait) -> Vec { let krate = trait_.module(db).krate(); let mut all = Vec::new(); for Crate { id } in krate.transitive_reverse_dependencies(db) { let impls = db.trait_impls_in_crate(id); all.extend(impls.for_trait(trait_.id).map(Self::from)) } all } pub fn trait_(self, db: &dyn HirDatabase) -> Option { let trait_ref = db.impl_trait(self.id)?; let id = trait_ref.skip_binders().hir_trait_id(); Some(Trait { id }) } pub fn trait_ref(self, db: &dyn HirDatabase) -> Option { let substs = TyBuilder::placeholder_subst(db, self.id); let trait_ref = db.impl_trait(self.id)?.substitute(Interner, &substs); let resolver = self.id.resolver(db.upcast()); Some(TraitRef::new_with_resolver(db, &resolver, trait_ref)) } pub fn self_ty(self, db: &dyn HirDatabase) -> Type { let resolver = self.id.resolver(db.upcast()); let substs = TyBuilder::placeholder_subst(db, self.id); let ty = db.impl_self_ty(self.id).substitute(Interner, &substs); Type::new_with_resolver_inner(db, &resolver, ty) } pub fn items(self, db: &dyn HirDatabase) -> Vec { db.impl_data(self.id).items.iter().map(|it| (*it).into()).collect() } pub fn is_negative(self, db: &dyn HirDatabase) -> bool { db.impl_data(self.id).is_negative } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.lookup(db.upcast()).container.into() } pub fn is_builtin_derive(self, db: &dyn HirDatabase) -> Option> { let src = self.source(db)?; src.file_id.is_builtin_derive(db.upcast()) } } #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct TraitRef { env: Arc, trait_ref: hir_ty::TraitRef, } impl TraitRef { pub(crate) fn new_with_resolver( db: &dyn HirDatabase, resolver: &Resolver, trait_ref: hir_ty::TraitRef, ) -> TraitRef { let env = resolver.generic_def().map_or_else( || Arc::new(TraitEnvironment::empty(resolver.krate())), |d| db.trait_environment(d), ); TraitRef { env, trait_ref } } pub fn trait_(&self) -> Trait { let id = self.trait_ref.hir_trait_id(); Trait { id } } pub fn self_ty(&self) -> Type { let ty = self.trait_ref.self_type_parameter(Interner); Type { env: self.env.clone(), ty } } /// Returns `idx`-th argument of this trait reference if it is a type argument. Note that the /// first argument is the `Self` type. pub fn get_type_argument(&self, idx: usize) -> Option { self.trait_ref .substitution .as_slice(Interner) .get(idx) .and_then(|arg| arg.ty(Interner)) .cloned() .map(|ty| Type { env: self.env.clone(), ty }) } } #[derive(Clone, Debug, PartialEq, Eq, Hash)] pub struct Closure { id: ClosureId, subst: Substitution, } impl From for ClosureId { fn from(value: Closure) -> Self { value.id } } impl Closure { fn as_ty(self) -> Ty { TyKind::Closure(self.id, self.subst).intern(Interner) } pub fn display_with_id(&self, db: &dyn HirDatabase) -> String { self.clone().as_ty().display(db).with_closure_style(ClosureStyle::ClosureWithId).to_string() } pub fn display_with_impl(&self, db: &dyn HirDatabase) -> String { self.clone().as_ty().display(db).with_closure_style(ClosureStyle::ImplFn).to_string() } pub fn captured_items(&self, db: &dyn HirDatabase) -> Vec { let owner = db.lookup_intern_closure((self.id).into()).0; let infer = &db.infer(owner); let info = infer.closure_info(&self.id); info.0.clone() } pub fn fn_trait(&self, db: &dyn HirDatabase) -> FnTrait { let owner = db.lookup_intern_closure((self.id).into()).0; let infer = &db.infer(owner); let info = infer.closure_info(&self.id); info.1 } } #[derive(Clone, PartialEq, Eq, Debug)] pub struct Type { env: Arc, ty: Ty, } impl Type { pub(crate) fn new_with_resolver(db: &dyn HirDatabase, resolver: &Resolver, ty: Ty) -> Type { Type::new_with_resolver_inner(db, resolver, ty) } pub(crate) fn new_with_resolver_inner( db: &dyn HirDatabase, resolver: &Resolver, ty: Ty, ) -> Type { let environment = resolver.generic_def().map_or_else( || Arc::new(TraitEnvironment::empty(resolver.krate())), |d| db.trait_environment(d), ); Type { env: environment, ty } } pub(crate) fn new_for_crate(krate: CrateId, ty: Ty) -> Type { Type { env: Arc::new(TraitEnvironment::empty(krate)), ty } } pub fn reference(inner: &Type, m: Mutability) -> Type { inner.derived( TyKind::Ref( if m.is_mut() { hir_ty::Mutability::Mut } else { hir_ty::Mutability::Not }, hir_ty::static_lifetime(), inner.ty.clone(), ) .intern(Interner), ) } fn new(db: &dyn HirDatabase, lexical_env: impl HasResolver, ty: Ty) -> Type { let resolver = lexical_env.resolver(db.upcast()); let environment = resolver.generic_def().map_or_else( || Arc::new(TraitEnvironment::empty(resolver.krate())), |d| db.trait_environment(d), ); Type { env: environment, ty } } fn from_def(db: &dyn HirDatabase, def: impl HasResolver + Into) -> Type { let ty_def = def.into(); let parent_subst = match ty_def { TyDefId::TypeAliasId(id) => match id.lookup(db.upcast()).container { ItemContainerId::TraitId(id) => { let subst = TyBuilder::subst_for_def(db, id, None).fill_with_unknown().build(); Some(subst) } ItemContainerId::ImplId(id) => { let subst = TyBuilder::subst_for_def(db, id, None).fill_with_unknown().build(); Some(subst) } _ => None, }, _ => None, }; let ty = TyBuilder::def_ty(db, ty_def, parent_subst).fill_with_unknown().build(); Type::new(db, def, ty) } pub fn new_slice(ty: Type) -> Type { Type { env: ty.env, ty: TyBuilder::slice(ty.ty) } } pub fn is_unit(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Tuple(0, ..)) } pub fn is_bool(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Scalar(Scalar::Bool)) } pub fn is_never(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Never) } pub fn is_mutable_reference(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Ref(hir_ty::Mutability::Mut, ..)) } pub fn is_reference(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Ref(..)) } pub fn as_reference(&self) -> Option<(Type, Mutability)> { let (ty, _lt, m) = self.ty.as_reference()?; let m = Mutability::from_mutable(matches!(m, hir_ty::Mutability::Mut)); Some((self.derived(ty.clone()), m)) } pub fn is_slice(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Slice(..)) } pub fn is_usize(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Scalar(Scalar::Uint(UintTy::Usize))) } pub fn is_float(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Scalar(Scalar::Float(_))) } pub fn is_char(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Scalar(Scalar::Char)) } pub fn is_int_or_uint(&self) -> bool { match self.ty.kind(Interner) { TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)) => true, _ => false, } } pub fn remove_ref(&self) -> Option { match &self.ty.kind(Interner) { TyKind::Ref(.., ty) => Some(self.derived(ty.clone())), _ => None, } } pub fn as_slice(&self) -> Option { match &self.ty.kind(Interner) { TyKind::Slice(ty) => Some(self.derived(ty.clone())), _ => None, } } pub fn strip_references(&self) -> Type { self.derived(self.ty.strip_references().clone()) } pub fn strip_reference(&self) -> Type { self.derived(self.ty.strip_reference().clone()) } pub fn is_unknown(&self) -> bool { self.ty.is_unknown() } /// Checks that particular type `ty` implements `std::future::IntoFuture` or /// `std::future::Future`. /// This function is used in `.await` syntax completion. pub fn impls_into_future(&self, db: &dyn HirDatabase) -> bool { let trait_ = db .lang_item(self.env.krate, LangItem::IntoFutureIntoFuture) .and_then(|it| { let into_future_fn = it.as_function()?; let assoc_item = as_assoc_item(db, AssocItem::Function, into_future_fn)?; let into_future_trait = assoc_item.containing_trait_or_trait_impl(db)?; Some(into_future_trait.id) }) .or_else(|| { let future_trait = db.lang_item(self.env.krate, LangItem::Future)?; future_trait.as_trait() }); let trait_ = match trait_ { Some(it) => it, None => return false, }; let canonical_ty = Canonical { value: self.ty.clone(), binders: CanonicalVarKinds::empty(Interner) }; method_resolution::implements_trait(&canonical_ty, db, self.env.clone(), trait_) } /// Checks that particular type `ty` implements `std::ops::FnOnce`. /// /// This function can be used to check if a particular type is callable, since FnOnce is a /// supertrait of Fn and FnMut, so all callable types implements at least FnOnce. pub fn impls_fnonce(&self, db: &dyn HirDatabase) -> bool { let fnonce_trait = match FnTrait::FnOnce.get_id(db, self.env.krate) { Some(it) => it, None => return false, }; let canonical_ty = Canonical { value: self.ty.clone(), binders: CanonicalVarKinds::empty(Interner) }; method_resolution::implements_trait_unique( &canonical_ty, db, self.env.clone(), fnonce_trait, ) } pub fn impls_trait(&self, db: &dyn HirDatabase, trait_: Trait, args: &[Type]) -> bool { let mut it = args.iter().map(|t| t.ty.clone()); let trait_ref = TyBuilder::trait_ref(db, trait_.id) .push(self.ty.clone()) .fill(|x| { let r = it.next().unwrap(); match x { ParamKind::Type => GenericArgData::Ty(r).intern(Interner), ParamKind::Const(ty) => { // FIXME: this code is not covered in tests. unknown_const_as_generic(ty.clone()) } } }) .build(); let goal = Canonical { value: hir_ty::InEnvironment::new(&self.env.env, trait_ref.cast(Interner)), binders: CanonicalVarKinds::empty(Interner), }; db.trait_solve(self.env.krate, self.env.block, goal).is_some() } pub fn normalize_trait_assoc_type( &self, db: &dyn HirDatabase, args: &[Type], alias: TypeAlias, ) -> Option { let mut args = args.iter(); let trait_id = match alias.id.lookup(db.upcast()).container { ItemContainerId::TraitId(id) => id, _ => unreachable!("non assoc type alias reached in normalize_trait_assoc_type()"), }; let parent_subst = TyBuilder::subst_for_def(db, trait_id, None) .push(self.ty.clone()) .fill(|x| { // FIXME: this code is not covered in tests. match x { ParamKind::Type => { GenericArgData::Ty(args.next().unwrap().ty.clone()).intern(Interner) } ParamKind::Const(ty) => unknown_const_as_generic(ty.clone()), } }) .build(); // FIXME: We don't handle GATs yet. let projection = TyBuilder::assoc_type_projection(db, alias.id, Some(parent_subst)).build(); let ty = db.normalize_projection(projection, self.env.clone()); if ty.is_unknown() { None } else { Some(self.derived(ty)) } } pub fn is_copy(&self, db: &dyn HirDatabase) -> bool { let lang_item = db.lang_item(self.env.krate, LangItem::Copy); let copy_trait = match lang_item { Some(LangItemTarget::Trait(it)) => it, _ => return false, }; self.impls_trait(db, copy_trait.into(), &[]) } pub fn as_callable(&self, db: &dyn HirDatabase) -> Option { let mut the_ty = &self.ty; let callee = match self.ty.kind(Interner) { TyKind::Ref(_, _, ty) if ty.as_closure().is_some() => { the_ty = ty; Callee::Closure(ty.as_closure().unwrap()) } TyKind::Closure(id, _) => Callee::Closure(*id), TyKind::Function(_) => Callee::FnPtr, TyKind::FnDef(..) => Callee::Def(self.ty.callable_def(db)?), _ => { let sig = hir_ty::callable_sig_from_fnonce(&self.ty, self.env.clone(), db)?; return Some(Callable { ty: self.clone(), sig, callee: Callee::Other, is_bound_method: false, }); } }; let sig = the_ty.callable_sig(db)?; Some(Callable { ty: self.clone(), sig, callee, is_bound_method: false }) } pub fn is_closure(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Closure { .. }) } pub fn as_closure(&self) -> Option { match self.ty.kind(Interner) { TyKind::Closure(id, subst) => Some(Closure { id: *id, subst: subst.clone() }), _ => None, } } pub fn is_fn(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::FnDef(..) | TyKind::Function { .. }) } pub fn is_array(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Array(..)) } pub fn is_packed(&self, db: &dyn HirDatabase) -> bool { let adt_id = match *self.ty.kind(Interner) { TyKind::Adt(hir_ty::AdtId(adt_id), ..) => adt_id, _ => return false, }; let adt = adt_id.into(); match adt { Adt::Struct(s) => s.repr(db).unwrap_or_default().pack.is_some(), _ => false, } } pub fn is_raw_ptr(&self) -> bool { matches!(self.ty.kind(Interner), TyKind::Raw(..)) } pub fn remove_raw_ptr(&self) -> Option { if let TyKind::Raw(_, ty) = self.ty.kind(Interner) { Some(self.derived(ty.clone())) } else { None } } pub fn contains_unknown(&self) -> bool { // FIXME: When we get rid of `ConstScalar::Unknown`, we can just look at precomputed // `TypeFlags` in `TyData`. return go(&self.ty); fn go(ty: &Ty) -> bool { match ty.kind(Interner) { TyKind::Error => true, TyKind::Adt(_, substs) | TyKind::AssociatedType(_, substs) | TyKind::Tuple(_, substs) | TyKind::OpaqueType(_, substs) | TyKind::FnDef(_, substs) | TyKind::Closure(_, substs) => { substs.iter(Interner).filter_map(|a| a.ty(Interner)).any(go) } TyKind::Array(_ty, len) if len.is_unknown() => true, TyKind::Array(ty, _) | TyKind::Slice(ty) | TyKind::Raw(_, ty) | TyKind::Ref(_, _, ty) => go(ty), TyKind::Scalar(_) | TyKind::Str | TyKind::Never | TyKind::Placeholder(_) | TyKind::BoundVar(_) | TyKind::InferenceVar(_, _) | TyKind::Dyn(_) | TyKind::Function(_) | TyKind::Alias(_) | TyKind::Foreign(_) | TyKind::Generator(..) | TyKind::GeneratorWitness(..) => false, } } } pub fn fields(&self, db: &dyn HirDatabase) -> Vec<(Field, Type)> { let (variant_id, substs) = match self.ty.kind(Interner) { TyKind::Adt(hir_ty::AdtId(AdtId::StructId(s)), substs) => ((*s).into(), substs), TyKind::Adt(hir_ty::AdtId(AdtId::UnionId(u)), substs) => ((*u).into(), substs), _ => return Vec::new(), }; db.field_types(variant_id) .iter() .map(|(local_id, ty)| { let def = Field { parent: variant_id.into(), id: local_id }; let ty = ty.clone().substitute(Interner, substs); (def, self.derived(ty)) }) .collect() } pub fn tuple_fields(&self, _db: &dyn HirDatabase) -> Vec { if let TyKind::Tuple(_, substs) = &self.ty.kind(Interner) { substs .iter(Interner) .map(|ty| self.derived(ty.assert_ty_ref(Interner).clone())) .collect() } else { Vec::new() } } pub fn as_array(&self, _db: &dyn HirDatabase) -> Option<(Type, usize)> { if let TyKind::Array(ty, len) = &self.ty.kind(Interner) { try_const_usize(len).map(|x| (self.derived(ty.clone()), x as usize)) } else { None } } pub fn autoderef<'a>(&'a self, db: &'a dyn HirDatabase) -> impl Iterator + 'a { self.autoderef_(db).map(move |ty| self.derived(ty)) } fn autoderef_<'a>(&'a self, db: &'a dyn HirDatabase) -> impl Iterator + 'a { // There should be no inference vars in types passed here let canonical = hir_ty::replace_errors_with_variables(&self.ty); autoderef(db, self.env.clone(), canonical).map(|canonical| canonical.value) } // This would be nicer if it just returned an iterator, but that runs into // lifetime problems, because we need to borrow temp `CrateImplDefs`. pub fn iterate_assoc_items( &self, db: &dyn HirDatabase, krate: Crate, mut callback: impl FnMut(AssocItem) -> Option, ) -> Option { let mut slot = None; self.iterate_assoc_items_dyn(db, krate, &mut |assoc_item_id| { slot = callback(assoc_item_id.into()); slot.is_some() }); slot } fn iterate_assoc_items_dyn( &self, db: &dyn HirDatabase, krate: Crate, callback: &mut dyn FnMut(AssocItemId) -> bool, ) { let def_crates = match method_resolution::def_crates(db, &self.ty, krate.id) { Some(it) => it, None => return, }; for krate in def_crates { let impls = db.inherent_impls_in_crate(krate); for impl_def in impls.for_self_ty(&self.ty) { for &item in db.impl_data(*impl_def).items.iter() { if callback(item) { return; } } } } } /// Iterates its type arguments /// /// It iterates the actual type arguments when concrete types are used /// and otherwise the generic names. /// It does not include `const` arguments. /// /// For code, such as: /// ```text /// struct Foo /// /// impl Foo /// ``` /// /// It iterates: /// ```text /// - "String" /// - "U" /// ``` pub fn type_arguments(&self) -> impl Iterator + '_ { self.ty .strip_references() .as_adt() .into_iter() .flat_map(|(_, substs)| substs.iter(Interner)) .filter_map(|arg| arg.ty(Interner).cloned()) .map(move |ty| self.derived(ty)) } /// Iterates its type and const arguments /// /// It iterates the actual type and const arguments when concrete types /// are used and otherwise the generic names. /// /// For code, such as: /// ```text /// struct Foo /// /// impl Foo /// ``` /// /// It iterates: /// ```text /// - "String" /// - "U" /// - "12" /// ``` pub fn type_and_const_arguments<'a>( &'a self, db: &'a dyn HirDatabase, ) -> impl Iterator + 'a { self.ty .strip_references() .as_adt() .into_iter() .flat_map(|(_, substs)| substs.iter(Interner)) .filter_map(|arg| { // arg can be either a `Ty` or `constant` if let Some(ty) = arg.ty(Interner) { Some(SmolStr::new(ty.display(db).to_string())) } else if let Some(const_) = arg.constant(Interner) { Some(SmolStr::new_inline(&const_.display(db).to_string())) } else { None } }) } /// Combines lifetime indicators, type and constant parameters into a single `Iterator` pub fn generic_parameters<'a>( &'a self, db: &'a dyn HirDatabase, ) -> impl Iterator + 'a { // iterate the lifetime self.as_adt() .and_then(|a| a.lifetime(db).and_then(|lt| Some((<.name).to_smol_str()))) .into_iter() // add the type and const parameters .chain(self.type_and_const_arguments(db)) } pub fn iterate_method_candidates_with_traits( &self, db: &dyn HirDatabase, scope: &SemanticsScope<'_>, traits_in_scope: &FxHashSet, with_local_impls: Option, name: Option<&Name>, mut callback: impl FnMut(Function) -> Option, ) -> Option { let _p = profile::span("iterate_method_candidates"); let mut slot = None; self.iterate_method_candidates_dyn( db, scope, traits_in_scope, with_local_impls, name, &mut |assoc_item_id| { if let AssocItemId::FunctionId(func) = assoc_item_id { if let Some(res) = callback(func.into()) { slot = Some(res); return ControlFlow::Break(()); } } ControlFlow::Continue(()) }, ); slot } pub fn iterate_method_candidates( &self, db: &dyn HirDatabase, scope: &SemanticsScope<'_>, with_local_impls: Option, name: Option<&Name>, callback: impl FnMut(Function) -> Option, ) -> Option { self.iterate_method_candidates_with_traits( db, scope, &scope.visible_traits().0, with_local_impls, name, callback, ) } fn iterate_method_candidates_dyn( &self, db: &dyn HirDatabase, scope: &SemanticsScope<'_>, traits_in_scope: &FxHashSet, with_local_impls: Option, name: Option<&Name>, callback: &mut dyn FnMut(AssocItemId) -> ControlFlow<()>, ) { // There should be no inference vars in types passed here let canonical = hir_ty::replace_errors_with_variables(&self.ty); let krate = scope.krate(); let environment = scope.resolver().generic_def().map_or_else( || Arc::new(TraitEnvironment::empty(krate.id)), |d| db.trait_environment(d), ); method_resolution::iterate_method_candidates_dyn( &canonical, db, environment, traits_in_scope, with_local_impls.and_then(|b| b.id.containing_block()).into(), name, method_resolution::LookupMode::MethodCall, &mut |_adj, id, _| callback(id), ); } pub fn iterate_path_candidates( &self, db: &dyn HirDatabase, scope: &SemanticsScope<'_>, traits_in_scope: &FxHashSet, with_local_impls: Option, name: Option<&Name>, mut callback: impl FnMut(AssocItem) -> Option, ) -> Option { let _p = profile::span("iterate_path_candidates"); let mut slot = None; self.iterate_path_candidates_dyn( db, scope, traits_in_scope, with_local_impls, name, &mut |assoc_item_id| { if let Some(res) = callback(assoc_item_id.into()) { slot = Some(res); return ControlFlow::Break(()); } ControlFlow::Continue(()) }, ); slot } fn iterate_path_candidates_dyn( &self, db: &dyn HirDatabase, scope: &SemanticsScope<'_>, traits_in_scope: &FxHashSet, with_local_impls: Option, name: Option<&Name>, callback: &mut dyn FnMut(AssocItemId) -> ControlFlow<()>, ) { let canonical = hir_ty::replace_errors_with_variables(&self.ty); let krate = scope.krate(); let environment = scope.resolver().generic_def().map_or_else( || Arc::new(TraitEnvironment::empty(krate.id)), |d| db.trait_environment(d), ); method_resolution::iterate_path_candidates( &canonical, db, environment, traits_in_scope, with_local_impls.and_then(|b| b.id.containing_block()).into(), name, &mut |id| callback(id), ); } pub fn as_adt(&self) -> Option { let (adt, _subst) = self.ty.as_adt()?; Some(adt.into()) } pub fn as_builtin(&self) -> Option { self.ty.as_builtin().map(|inner| BuiltinType { inner }) } pub fn as_dyn_trait(&self) -> Option { self.ty.dyn_trait().map(Into::into) } /// If a type can be represented as `dyn Trait`, returns all traits accessible via this type, /// or an empty iterator otherwise. pub fn applicable_inherent_traits<'a>( &'a self, db: &'a dyn HirDatabase, ) -> impl Iterator + 'a { let _p = profile::span("applicable_inherent_traits"); self.autoderef_(db) .filter_map(|ty| ty.dyn_trait()) .flat_map(move |dyn_trait_id| hir_ty::all_super_traits(db.upcast(), dyn_trait_id)) .map(Trait::from) } pub fn env_traits<'a>(&'a self, db: &'a dyn HirDatabase) -> impl Iterator + 'a { let _p = profile::span("env_traits"); self.autoderef_(db) .filter(|ty| matches!(ty.kind(Interner), TyKind::Placeholder(_))) .flat_map(|ty| { self.env .traits_in_scope_from_clauses(ty) .flat_map(|t| hir_ty::all_super_traits(db.upcast(), t)) }) .map(Trait::from) } pub fn as_impl_traits(&self, db: &dyn HirDatabase) -> Option> { self.ty.impl_trait_bounds(db).map(|it| { it.into_iter().filter_map(|pred| match pred.skip_binders() { hir_ty::WhereClause::Implemented(trait_ref) => { Some(Trait::from(trait_ref.hir_trait_id())) } _ => None, }) }) } pub fn as_associated_type_parent_trait(&self, db: &dyn HirDatabase) -> Option { self.ty.associated_type_parent_trait(db).map(Into::into) } fn derived(&self, ty: Ty) -> Type { Type { env: self.env.clone(), ty } } /// Visits every type, including generic arguments, in this type. `cb` is called with type /// itself first, and then with its generic arguments. pub fn walk(&self, db: &dyn HirDatabase, mut cb: impl FnMut(Type)) { fn walk_substs( db: &dyn HirDatabase, type_: &Type, substs: &Substitution, cb: &mut impl FnMut(Type), ) { for ty in substs.iter(Interner).filter_map(|a| a.ty(Interner)) { walk_type(db, &type_.derived(ty.clone()), cb); } } fn walk_bounds( db: &dyn HirDatabase, type_: &Type, bounds: &[QuantifiedWhereClause], cb: &mut impl FnMut(Type), ) { for pred in bounds { if let WhereClause::Implemented(trait_ref) = pred.skip_binders() { cb(type_.clone()); // skip the self type. it's likely the type we just got the bounds from for ty in trait_ref.substitution.iter(Interner).skip(1).filter_map(|a| a.ty(Interner)) { walk_type(db, &type_.derived(ty.clone()), cb); } } } } fn walk_type(db: &dyn HirDatabase, type_: &Type, cb: &mut impl FnMut(Type)) { let ty = type_.ty.strip_references(); match ty.kind(Interner) { TyKind::Adt(_, substs) => { cb(type_.derived(ty.clone())); walk_substs(db, type_, substs, cb); } TyKind::AssociatedType(_, substs) => { if ty.associated_type_parent_trait(db).is_some() { cb(type_.derived(ty.clone())); } walk_substs(db, type_, substs, cb); } TyKind::OpaqueType(_, subst) => { if let Some(bounds) = ty.impl_trait_bounds(db) { walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb); } walk_substs(db, type_, subst, cb); } TyKind::Alias(AliasTy::Opaque(opaque_ty)) => { if let Some(bounds) = ty.impl_trait_bounds(db) { walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb); } walk_substs(db, type_, &opaque_ty.substitution, cb); } TyKind::Placeholder(_) => { if let Some(bounds) = ty.impl_trait_bounds(db) { walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb); } } TyKind::Dyn(bounds) => { walk_bounds( db, &type_.derived(ty.clone()), bounds.bounds.skip_binders().interned(), cb, ); } TyKind::Ref(_, _, ty) | TyKind::Raw(_, ty) | TyKind::Array(ty, _) | TyKind::Slice(ty) => { walk_type(db, &type_.derived(ty.clone()), cb); } TyKind::FnDef(_, substs) | TyKind::Tuple(_, substs) | TyKind::Closure(.., substs) => { walk_substs(db, type_, substs, cb); } TyKind::Function(hir_ty::FnPointer { substitution, .. }) => { walk_substs(db, type_, &substitution.0, cb); } _ => {} } } walk_type(db, self, &mut cb); } pub fn could_unify_with(&self, db: &dyn HirDatabase, other: &Type) -> bool { let tys = hir_ty::replace_errors_with_variables(&(self.ty.clone(), other.ty.clone())); hir_ty::could_unify(db, self.env.clone(), &tys) } pub fn could_coerce_to(&self, db: &dyn HirDatabase, to: &Type) -> bool { let tys = hir_ty::replace_errors_with_variables(&(self.ty.clone(), to.ty.clone())); hir_ty::could_coerce(db, self.env.clone(), &tys) } pub fn as_type_param(&self, db: &dyn HirDatabase) -> Option { match self.ty.kind(Interner) { TyKind::Placeholder(p) => Some(TypeParam { id: TypeParamId::from_unchecked(hir_ty::from_placeholder_idx(db, *p)), }), _ => None, } } /// Returns unique `GenericParam`s contained in this type. pub fn generic_params(&self, db: &dyn HirDatabase) -> FxHashSet { hir_ty::collect_placeholders(&self.ty, db) .into_iter() .map(|id| TypeOrConstParam { id }.split(db).either_into()) .collect() } pub fn layout(&self, db: &dyn HirDatabase) -> Result { layout_of_ty(db, &self.ty, self.env.krate) } } // FIXME: Document this #[derive(Debug)] pub struct Callable { ty: Type, sig: CallableSig, callee: Callee, /// Whether this is a method that was called with method call syntax. pub(crate) is_bound_method: bool, } #[derive(Debug)] enum Callee { Def(CallableDefId), Closure(ClosureId), FnPtr, Other, } pub enum CallableKind { Function(Function), TupleStruct(Struct), TupleEnumVariant(Variant), Closure, FnPtr, /// Some other type that implements `FnOnce`. Other, } impl Callable { pub fn kind(&self) -> CallableKind { use Callee::*; match self.callee { Def(CallableDefId::FunctionId(it)) => CallableKind::Function(it.into()), Def(CallableDefId::StructId(it)) => CallableKind::TupleStruct(it.into()), Def(CallableDefId::EnumVariantId(it)) => CallableKind::TupleEnumVariant(it.into()), Closure(_) => CallableKind::Closure, FnPtr => CallableKind::FnPtr, Other => CallableKind::Other, } } pub fn receiver_param(&self, db: &dyn HirDatabase) -> Option<(ast::SelfParam, Type)> { let func = match self.callee { Callee::Def(CallableDefId::FunctionId(it)) if self.is_bound_method => it, _ => return None, }; let src = func.lookup(db.upcast()).source(db.upcast()); let param_list = src.value.param_list()?; Some((param_list.self_param()?, self.ty.derived(self.sig.params()[0].clone()))) } pub fn n_params(&self) -> usize { self.sig.params().len() - if self.is_bound_method { 1 } else { 0 } } pub fn params( &self, db: &dyn HirDatabase, ) -> Vec<(Option>, Type)> { let types = self .sig .params() .iter() .skip(if self.is_bound_method { 1 } else { 0 }) .map(|ty| self.ty.derived(ty.clone())); let map_param = |it: ast::Param| it.pat().map(Either::Right); let patterns = match self.callee { Callee::Def(CallableDefId::FunctionId(func)) => { let src = func.lookup(db.upcast()).source(db.upcast()); src.value.param_list().map(|param_list| { param_list .self_param() .map(|it| Some(Either::Left(it))) .filter(|_| !self.is_bound_method) .into_iter() .chain(param_list.params().map(map_param)) }) } Callee::Closure(closure_id) => match closure_source(db, closure_id) { Some(src) => src.param_list().map(|param_list| { param_list .self_param() .map(|it| Some(Either::Left(it))) .filter(|_| !self.is_bound_method) .into_iter() .chain(param_list.params().map(map_param)) }), None => None, }, _ => None, }; patterns.into_iter().flatten().chain(iter::repeat(None)).zip(types).collect() } pub fn return_type(&self) -> Type { self.ty.derived(self.sig.ret().clone()) } } fn closure_source(db: &dyn HirDatabase, closure: ClosureId) -> Option { let (owner, expr_id) = db.lookup_intern_closure(closure.into()); let (_, source_map) = db.body_with_source_map(owner); let ast = source_map.expr_syntax(expr_id).ok()?; let root = ast.file_syntax(db.upcast()); let expr = ast.value.to_node(&root); match expr { ast::Expr::ClosureExpr(it) => Some(it), _ => None, } } #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum BindingMode { Move, Ref(Mutability), } /// For IDE only #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub enum ScopeDef { ModuleDef(ModuleDef), GenericParam(GenericParam), ImplSelfType(Impl), AdtSelfType(Adt), Local(Local), Label(Label), Unknown, } impl ScopeDef { pub fn all_items(def: PerNs) -> ArrayVec { let mut items = ArrayVec::new(); match (def.take_types(), def.take_values()) { (Some(m1), None) => items.push(ScopeDef::ModuleDef(m1.into())), (None, Some(m2)) => items.push(ScopeDef::ModuleDef(m2.into())), (Some(m1), Some(m2)) => { // Some items, like unit structs and enum variants, are // returned as both a type and a value. Here we want // to de-duplicate them. if m1 != m2 { items.push(ScopeDef::ModuleDef(m1.into())); items.push(ScopeDef::ModuleDef(m2.into())); } else { items.push(ScopeDef::ModuleDef(m1.into())); } } (None, None) => {} }; if let Some(macro_def_id) = def.take_macros() { items.push(ScopeDef::ModuleDef(ModuleDef::Macro(macro_def_id.into()))); } if items.is_empty() { items.push(ScopeDef::Unknown); } items } pub fn attrs(&self, db: &dyn HirDatabase) -> Option { match self { ScopeDef::ModuleDef(it) => it.attrs(db), ScopeDef::GenericParam(it) => Some(it.attrs(db)), ScopeDef::ImplSelfType(_) | ScopeDef::AdtSelfType(_) | ScopeDef::Local(_) | ScopeDef::Label(_) | ScopeDef::Unknown => None, } } pub fn krate(&self, db: &dyn HirDatabase) -> Option { match self { ScopeDef::ModuleDef(it) => it.module(db).map(|m| m.krate()), ScopeDef::GenericParam(it) => Some(it.module(db).krate()), ScopeDef::ImplSelfType(_) => None, ScopeDef::AdtSelfType(it) => Some(it.module(db).krate()), ScopeDef::Local(it) => Some(it.module(db).krate()), ScopeDef::Label(it) => Some(it.module(db).krate()), ScopeDef::Unknown => None, } } } impl From for ScopeDef { fn from(item: ItemInNs) -> Self { match item { ItemInNs::Types(id) => ScopeDef::ModuleDef(id), ItemInNs::Values(id) => ScopeDef::ModuleDef(id), ItemInNs::Macros(id) => ScopeDef::ModuleDef(ModuleDef::Macro(id)), } } } #[derive(Clone, Debug, PartialEq, Eq)] pub struct Adjustment { pub source: Type, pub target: Type, pub kind: Adjust, } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum Adjust { /// Go from ! to any type. NeverToAny, /// Dereference once, producing a place. Deref(Option), /// Take the address and produce either a `&` or `*` pointer. Borrow(AutoBorrow), Pointer(PointerCast), } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum AutoBorrow { /// Converts from T to &T. Ref(Mutability), /// Converts from T to *T. RawPtr(Mutability), } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct OverloadedDeref(pub Mutability); pub trait HasVisibility { fn visibility(&self, db: &dyn HirDatabase) -> Visibility; fn is_visible_from(&self, db: &dyn HirDatabase, module: Module) -> bool { let vis = self.visibility(db); vis.is_visible_from(db.upcast(), module.id) } } /// Trait for obtaining the defining crate of an item. pub trait HasCrate { fn krate(&self, db: &dyn HirDatabase) -> Crate; } impl HasCrate for T { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db.upcast()).krate().into() } } impl HasCrate for AssocItem { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Struct { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Union { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Field { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.parent_def(db).module(db).krate() } } impl HasCrate for Variant { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Function { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Const { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for TypeAlias { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Type { fn krate(&self, _db: &dyn HirDatabase) -> Crate { self.env.krate.into() } } impl HasCrate for Macro { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Trait { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for TraitAlias { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Static { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Adt { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Module { fn krate(&self, _: &dyn HirDatabase) -> Crate { Module::krate(*self) } }