hir_def/
dyn_map.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//! This module defines a `DynMap` -- a container for heterogeneous maps.
//!
//! This means that `DynMap` stores a bunch of hash maps inside, and those maps
//! can be of different types.
//!
//! It is used like this:
//!
//! ```
//! // keys define submaps of a `DynMap`
//! const STRING_TO_U32: Key<String, u32> = Key::new();
//! const U32_TO_VEC: Key<u32, Vec<bool>> = Key::new();
//!
//! // Note: concrete type, no type params!
//! let mut map = DynMap::new();
//!
//! // To access a specific map, index the `DynMap` by `Key`:
//! map[STRING_TO_U32].insert("hello".to_string(), 92);
//! let value = map[U32_TO_VEC].get(92);
//! assert!(value.is_none());
//! ```
//!
//! This is a work of fiction. Any similarities to Kotlin's `BindingContext` are
//! a coincidence.

pub mod keys {
    use std::marker::PhantomData;

    use hir_expand::{attrs::AttrId, MacroCallId};
    use rustc_hash::FxHashMap;
    use syntax::{ast, AstNode, AstPtr};

    use crate::{
        dyn_map::{DynMap, Policy},
        BlockId, ConstId, EnumId, EnumVariantId, ExternCrateId, FieldId, FunctionId, ImplId,
        LifetimeParamId, Macro2Id, MacroRulesId, ProcMacroId, StaticId, StructId, TraitAliasId,
        TraitId, TypeAliasId, TypeOrConstParamId, UnionId, UseId,
    };

    pub type Key<K, V> = crate::dyn_map::Key<AstPtr<K>, V, AstPtrPolicy<K, V>>;

    pub const BLOCK: Key<ast::BlockExpr, BlockId> = Key::new();
    pub const FUNCTION: Key<ast::Fn, FunctionId> = Key::new();
    pub const CONST: Key<ast::Const, ConstId> = Key::new();
    pub const STATIC: Key<ast::Static, StaticId> = Key::new();
    pub const TYPE_ALIAS: Key<ast::TypeAlias, TypeAliasId> = Key::new();
    pub const IMPL: Key<ast::Impl, ImplId> = Key::new();
    pub const TRAIT: Key<ast::Trait, TraitId> = Key::new();
    pub const TRAIT_ALIAS: Key<ast::TraitAlias, TraitAliasId> = Key::new();
    pub const STRUCT: Key<ast::Struct, StructId> = Key::new();
    pub const UNION: Key<ast::Union, UnionId> = Key::new();
    pub const ENUM: Key<ast::Enum, EnumId> = Key::new();
    pub const EXTERN_CRATE: Key<ast::ExternCrate, ExternCrateId> = Key::new();
    pub const USE: Key<ast::Use, UseId> = Key::new();

    pub const ENUM_VARIANT: Key<ast::Variant, EnumVariantId> = Key::new();
    pub const TUPLE_FIELD: Key<ast::TupleField, FieldId> = Key::new();
    pub const RECORD_FIELD: Key<ast::RecordField, FieldId> = Key::new();
    pub const TYPE_PARAM: Key<ast::TypeParam, TypeOrConstParamId> = Key::new();
    pub const CONST_PARAM: Key<ast::ConstParam, TypeOrConstParamId> = Key::new();
    pub const LIFETIME_PARAM: Key<ast::LifetimeParam, LifetimeParamId> = Key::new();

    pub const MACRO_RULES: Key<ast::MacroRules, MacroRulesId> = Key::new();
    pub const MACRO2: Key<ast::MacroDef, Macro2Id> = Key::new();
    pub const PROC_MACRO: Key<ast::Fn, ProcMacroId> = Key::new();
    pub const MACRO_CALL: Key<ast::MacroCall, MacroCallId> = Key::new();
    pub const ATTR_MACRO_CALL: Key<ast::Item, MacroCallId> = Key::new();
    pub const DERIVE_MACRO_CALL: Key<ast::Attr, (AttrId, MacroCallId, Box<[Option<MacroCallId>]>)> =
        Key::new();

    /// XXX: AST Nodes and SyntaxNodes have identity equality semantics: nodes are
    /// equal if they point to exactly the same object.
    ///
    /// In general, we do not guarantee that we have exactly one instance of a
    /// syntax tree for each file. We probably should add such guarantee, but, for
    /// the time being, we will use identity-less AstPtr comparison.
    pub struct AstPtrPolicy<AST, ID> {
        _phantom: PhantomData<(AST, ID)>,
    }

    impl<AST: AstNode + 'static, ID: 'static> Policy for AstPtrPolicy<AST, ID> {
        type K = AstPtr<AST>;
        type V = ID;
        fn insert(map: &mut DynMap, key: AstPtr<AST>, value: ID) {
            map.map
                .entry::<FxHashMap<AstPtr<AST>, ID>>()
                .or_insert_with(Default::default)
                .insert(key, value);
        }
        fn get<'a>(map: &'a DynMap, key: &AstPtr<AST>) -> Option<&'a ID> {
            map.map.get::<FxHashMap<AstPtr<AST>, ID>>()?.get(key)
        }
        fn is_empty(map: &DynMap) -> bool {
            map.map.get::<FxHashMap<AstPtr<AST>, ID>>().is_none_or(|it| it.is_empty())
        }
    }
}

use std::{
    hash::Hash,
    marker::PhantomData,
    ops::{Index, IndexMut},
};

use rustc_hash::FxHashMap;
use stdx::anymap::Map;

pub struct Key<K, V, P = (K, V)> {
    _phantom: PhantomData<(K, V, P)>,
}

impl<K, V, P> Key<K, V, P> {
    pub(crate) const fn new() -> Key<K, V, P> {
        Key { _phantom: PhantomData }
    }
}

impl<K, V, P> Copy for Key<K, V, P> {}

impl<K, V, P> Clone for Key<K, V, P> {
    fn clone(&self) -> Key<K, V, P> {
        *self
    }
}

pub trait Policy {
    type K;
    type V;

    fn insert(map: &mut DynMap, key: Self::K, value: Self::V);
    fn get<'a>(map: &'a DynMap, key: &Self::K) -> Option<&'a Self::V>;
    fn is_empty(map: &DynMap) -> bool;
}

impl<K: Hash + Eq + 'static, V: 'static> Policy for (K, V) {
    type K = K;
    type V = V;
    fn insert(map: &mut DynMap, key: K, value: V) {
        map.map.entry::<FxHashMap<K, V>>().or_insert_with(Default::default).insert(key, value);
    }
    fn get<'a>(map: &'a DynMap, key: &K) -> Option<&'a V> {
        map.map.get::<FxHashMap<K, V>>()?.get(key)
    }
    fn is_empty(map: &DynMap) -> bool {
        map.map.get::<FxHashMap<K, V>>().is_none_or(|it| it.is_empty())
    }
}

pub struct DynMap {
    pub(crate) map: Map,
}

impl Default for DynMap {
    fn default() -> Self {
        DynMap { map: Map::new() }
    }
}

#[repr(transparent)]
pub struct KeyMap<KEY> {
    map: DynMap,
    _phantom: PhantomData<KEY>,
}

impl<P: Policy> KeyMap<Key<P::K, P::V, P>> {
    pub fn insert(&mut self, key: P::K, value: P::V) {
        P::insert(&mut self.map, key, value)
    }
    pub fn get(&self, key: &P::K) -> Option<&P::V> {
        P::get(&self.map, key)
    }

    pub fn is_empty(&self) -> bool {
        P::is_empty(&self.map)
    }
}

impl<P: Policy> Index<Key<P::K, P::V, P>> for DynMap {
    type Output = KeyMap<Key<P::K, P::V, P>>;
    fn index(&self, _key: Key<P::K, P::V, P>) -> &Self::Output {
        // Safe due to `#[repr(transparent)]`.
        unsafe { std::mem::transmute::<&DynMap, &KeyMap<Key<P::K, P::V, P>>>(self) }
    }
}

impl<P: Policy> IndexMut<Key<P::K, P::V, P>> for DynMap {
    fn index_mut(&mut self, _key: Key<P::K, P::V, P>) -> &mut Self::Output {
        // Safe due to `#[repr(transparent)]`.
        unsafe { std::mem::transmute::<&mut DynMap, &mut KeyMap<Key<P::K, P::V, P>>>(self) }
    }
}