Derive `PartialEq`, `Eq` & `Hash` for `hir::Param`
Since `hir::SelfParam`, as well as all members of `hir::Param` already implement `PartialEq`, `Eq` & `Hash` it seems reasonable to also make `hir::Param` implement those.
(the change is motivated by an outside use of the `ra_ap_hir` crate that would benefit from being able to collect params in a `HashSet`)
feature: Add `destructure_struct_binding`
Adds an assist for destructuring a struct in a binding (#8673). I saw that #13997 has been abandoned for a while, so I thought I'd give it a go.
## Example
```rust
let foo = Foo { bar: 1, baz: 2 };
let bar2 = foo.bar;
let baz2 = foo.baz;
let foo2 = foo;
let fizz = Fizz(1, 2);
let buzz = fizz.0;
```
becomes
```rust
let Foo { bar, baz } = Foo { bar: 1, baz: 2 };
let bar2 = bar;
let baz2 = baz;
let foo2 = todo!();
let Fizz(_0, _1) = Fizz(1, 2);
let buzz = _0;
```
More examples in the tests.
## What is included?
- [x] Destructure record, tuple, and unit struct bindings
- [x] Edit field usages
- [x] Non-exhaustive structs in foreign crates and private fields get hidden behind `..`
- [x] Nested bindings
- [x] Carry over `mut` and `ref mut` in nested bindings to fields, i.e. `let Foo { ref mut bar } = ...` becomes `let Foo { bar: Bar { baz: ref mut baz } } = ...`
- [x] Attempt to resolve collisions with other names in the scope
- [x] If the binding is to a reference, field usages are dereferenced if required
- [x] Use shorthand notation if possible
## Known limitations
- `let foo = Foo { bar: 1 }; foo;` currently results in `let Foo { bar } = Foo { bar: 1 }; todo!();` instead of reassembling the struct. This requires user intervention.
- Unused fields are not currently omitted. I thought that this is more ergonomic, as there already is a quick fix action for adding `: _` to unused field patterns.
fix: Goto definition for `index_mut`
Mostly same with #16696.
0ac05c0527/crates/hir-ty/src/infer/mutability.rs (L103-L133)
Thankfully, we are doing similar method resolutions so we can use them like the mentioned PR.
As there are only three `LangItem`s having `Mut` in there names; `FnMut`, `DerefMut` and `IndexMut`, I think that this is the last one 😄
Separate into create and apply edit
Rename usages
Hacky name map
Add more tests
Handle non-exhaustive
Add some more TODOs
Private fields
Use todo
Nesting
Improve rest token generation
Cleanup
Doc -> regular comment
Support mut
Add `to_path_buf()` method for `RelPath`
There seems to be no ergonomic way to obtain a `RelPathBuf` from a corresponding `&RelPath` at the moment, making the latter sort of a dead end.
The `AbsPath` type provides the following:
```rust
impl AbsPath {
// ...
/// Equivalent of [`Path::to_path_buf`] for `AbsPath`.
pub fn to_path_buf(&self) -> AbsPathBuf {
AbsPathBuf::try_from(self.0.to_path_buf()).unwrap()
}
// ...
}
```
So I took the liberty of adding a corresponding equivalent for `RelPath:
```rust
impl RelPath {
// ...
/// Equivalent of [`Path::to_path_buf`] for `RelPath`.
pub fn to_path_buf(&self) -> RelPathBuf {
RelPathBuf::try_from(self.0.to_path_buf()).unwrap()
}
// ...
}
```
(the change is motivated by an outside use of the `ra_ap_paths` crate that would benefit from being able to use `RelPath` and `AbsPath` over `Path`)
fix: Wrong closure kind deduction for closures with predicates
Completes #16472, fixes#16421
The changed closure kind deduction is mostly simlar to `rustc_hir_typeck/src/closure.rs`.
Porting closure sig deduction from it seems possible too and I'm considering doing it with another PR
feat: Add "make tuple" tactic to term search
Follow up to https://github.com/rust-lang/rust-analyzer/pull/16092
Now term search also supports tuples.
```rust
let a: i32 = 1;
let b: f64 = 0.0;
let c: (i32, (f64, i32)) = todo!(); // Finds (a, (b, a))
```
In addition to new tactic that handles tuples I changed how the generics are handled.
Previously it tried all possible options from types we had in scope but now it only tries useful ones that help us directly towards the goal or at least towards calling some other function.
This changes O(2^n) to O(n^2) where n is amount of rounds which in practice allows using types that take generics for multiple rounds (previously limited to 1). Average case that also used to be exponential is now roughly linear.
This means that deeply nested generics also work.
````rust
// Finds all valid combos, including `Some(Some(Some(...)))`
let a: Option<Option<Option<bool>>> = todo!();
````
_Note that although the complexity is smaller allowing more types with generics the search overall slows down considerably. I hope it's fine tho as the autocomplete is disabled by default and for code actions it's not super slow. Might have to tweak the depth hyper parameter tho_
This resulted in a huge increase of results found (benchmarks on `ripgrep` crate):
Before
````
Tail Expr syntactic hits: 149/1692 (8%)
Tail Exprs found: 749/1692 (44%)
Term search avg time: 18ms
```
After
```
Tail Expr syntactic hits: 291/1692 (17%)
Tail Exprs found: 1253/1692 (74%)
Term search avg time: 139ms
````
Most changes are local to term search except some tuple related stuff on `hir::Type`.
performance: Speed up Method Completions By Taking Advantage of Orphan Rules
(Continues https://github.com/rust-lang/rust-analyzer/pull/16498)
This PR speeds up method completions by doing two things without regressing `analysis-stats`[^1]:
- Filter candidate traits prior to calling `iterate_path_candidates` by relying on orphan rules (see below for a slightly more in-depth explanation). When generating completions [on `slog::Logger`](5e9e59c312/common/src/ledger.rs (L78)) in `oxidecomputer/omicron` as a test, this PR halved my completion times—it's now 454ms cold and 281ms warm. Before this PR, it was 808ms cold and 579ms warm.
- Inline some of the method candidate checks into `is_valid_method_candidate` and remove some unnecessary visibility checks. This was suggested by `@Veykril` in [this comment](https://github.com/rust-lang/rust-analyzer/pull/16498#issuecomment-1929864427).
We filter candidate traits by taking advantage of orphan rules. For additional details, I'll rely on `@WaffleLapkin's` explanation [from Zulip](https://rust-lang.zulipchat.com/#narrow/stream/185405-t-compiler.2Frust-analyzer/topic/Trait.20Checking/near/420942417):
> A type `A` can only implements traits which
> 1. Have a blanket implementation (`impl<T> Trait for T {}`)
> 2. Have implementation for `A` (`impl Trait for A {}`)
>
> Blanket implementation can only exist in `Trait`'s crate. Implementation for `A` can only exist in `A`'s or `Trait`'s crate.
Big thanks to Waffle for its keen observation!
---
I think some additional improvements are possible:
- `for_trait_and_self_ty` seemingly does not distinguish between `&T`, `&mut T`, or `T`, resulting in seemingly irrelevant traits like `tokio::io::AsyncWrite` being being included for, e.g., `&slog::Logger`. I don't know they're being considered due to the [autoref/autoderef behavior](a02a219773/crates/hir-ty/src/method_resolution.rs (L945-L962)), but I wonder if it'd make sense to filter by mutability earlier and not consider trait implementations that require `&mut T` when we only have a `&T`.
- The method completions [spend a _lot_ of time in unification](https://rust-lang.zulipchat.com/#narrow/stream/185405-t-compiler.2Frust-analyzer/topic/Trait.20Checking/near/421072356), and while there might be low-hanging fruit there, it might make more sense to wait for the new trait solver in `rustc`. I dunno.
[^1]: The filtering occurs outside of typechecking, after all.
fix: Don't panic on synthetic syntax in inference diagnostics
Temporary fix for https://github.com/rust-lang/rust-analyzer/issues/16682
We ought to rethink how we attach diagnostics to things, as IDs don't work for `format_args` like that!