So that given a `TypeRef` we will be able to trace it back to source code.
This is necessary to be able to provide diagnostics for lowering to chalk tys, since the input to that is `TypeRef`.
This means that `TypeRef`s now have an identity, which means storing them in arena and not interning them, which is an unfortunate (but necessary) loss but also a pretty massive change. Luckily, because of the separation layer we have for IDE and HIR, this change never crosses the IDE boundary.
E.g.:
```rust
let v;
macro_rules! m { () => { v }; }
```
This was an existing bug, but it was less severe because unless the variable was shadowed it would be correctly resolved. With hygiene however, without this fix the variable is never resolved.
Or macro_rules hygiene, or mixed site hygiene. In other words, hygiene for variables and labels but not items.
The realization that made me implement this was that while "full" hygiene (aka. def site hygiene) is really hard for us to implement, and will likely involve intrusive changes and performance losses, since every `Name` will have to carry hygiene, mixed site hygiene is very local: it applies only to bodies, and we very well can save it in a side map with minor losses.
This fixes one diagnostic in r-a that was about `izip!()` using hygiene (yay!) but it introduces a huge number of others, because of #18262. Up until now this issue wasn't a major problem because it only affected few cases, but with hygiene identifiers referred by macros like that are not resolved at all. The next commit will fix that.
And few more fixups.
I was worried this will lead to more memory usage since `ExprOrPatId` is double the size of `ExprId`, but this does not regress `analysis-stats .`. If this turns out to be a problem, we can easily use the high bit to encode this information.
Instead of lowering them to `<expr> = <expr>`, then hacking on-demand to resolve them, we lower them to `<pat> = <expr>`, and use the pattern infrastructure to handle them. It turns out, destructuring assignments are surprisingly similar to pattern bindings, and so only minor modifications are needed.
This fixes few bugs that arose because of the non-uniform handling (for example, MIR lowering not handling slice and record patterns, and closure capture calculation not handling destructuring assignments at all), and furthermore, guarantees we won't have such bugs in the future, since the programmer will always have to explicitly handle `Expr::Assignment`.
Tests don't pass yet; that's because the generated patterns do not exist in the source map. The next commit will fix that.
fix: Fix resolution of label inside macro
When working on Something Else (TM) (I left a hint in the commits :P), I noticed to my surprise that labels inside macros are not resolved. This led to a discovery of *two* unrelated bugs, which are hereby fixed in two commits.
This will mean users opting to not activate `cfg(test)` will lose IDE experience on them, which is quite unfortunate, but this is unavoidable if we want to avoid false positives on e.g. diagnostics. The real fix is to provide IDE experience even for cfg'ed out code, but this is out of scope for this PR.
fix: Fix name resolution when an import is resolved to some namespace and then later in the algorithm another namespace is added
The import is flagged as "indeterminate", and previously it was re-resolved, but only at the end of name resolution, when it's already too late for anything that depends on it.
This issue was tried to fix in https://github.com/rust-lang/rust-analyzer/pull/2466, but it was not fixed fully.
That PR is also why IDE features did work: the import at the end was resolved correctly, so IDE features that re-resolved the macro path resolved it correctly.
I was concerned about the performance of this, but this doesn't seem to regress `analysis-stats .`, so I guess it's fine to land this. I have no idea about the incremental perf however and I don't know how to measure that, although when typing in `zbus` (including creating a new function, which should recompute the def map) completion was fast enough.
I didn't check what rustc does, so maybe it does something more performant, like keeping track of only possibly problematic imports.
Fixes#18138.
Probably fixes#17630.
The import is flagged as "indeterminate", and previously it was re-resolved, but only at the end of name resolution, when it's already too late for anything that depends on it.
This issue was tried to fix in https://github.com/rust-lang/rust-analyzer/pull/2466, but it was not fixed fully.
feat: Support the `${concat(...)}` metavariable expression
I didn't follow rustc precisely, because I think it does some things wrongly (or they are FIXME), but I only allowed more code, not less. So we're all fine.
Closes#18145.
I didn't follow rustc precisely, because I think it does some things wrongly (or they are FIXME), but I only allowed more code, not less. So we're all fine.
Use more correct handling of lint attributes
The previous analysis was top-down, and worked on a single file (expanding macros). The new analysis is bottom-up, starting from the diagnostics and climbing up the syntax and module tree.
While this is more efficient (and in fact, efficiency was the motivating reason to work on this), unfortunately the code was already fast enough. But luckily, it also fixes a correctness problem: outline parent modules' attributes were not respected for the previous analysis. Case lints specifically did their own analysis to accommodate that, but it was limited to only them. The new analysis works on all kinds of lints, present and future.
It was basically impossible to fix the old analysis without rewriting it because navigating the module hierarchy must come bottom-up, and if we already have a bottom-up analysis (including syntax analysis because modules can be nested in other syntax elements, including macros), it makes sense to use only this kind of analysis.
Few other bugs (not fundamental to the previous analysis) are also fixed, e.g. overwriting of lint levels (i.e. `#[allow(lint)] mod foo { #[warn(lint)] mod bar; }`.
After this PR is merged I intend to work on an editor command that does workspace-wide diagnostics analysis (that is, `rust-analyzer diagnostics` but from your editor and without having to spawn a new process, which will have to analyze the workspace from scratch). This can be useful to users who do not want to enable check on save because of its overhead, but want to see workspace wide diagnostics from r-a (or to maintainers of rust-analyzer).
Closes#18086.
Closes#18081.
Fixes#18056.
The previous analysis was top-down, and worked on a single file (expanding macros). The new analysis is bottom-up, starting from the diagnostics and climbing up the syntax and module tree.
While this is more efficient (and in fact, efficiency was the motivating reason to work on this), unfortunately the code was already fast enough. But luckily, it also fixes a correctness problem: outline parent modules' attributes were not respected for the previous analysis. Case lints specifically did their own analysis to accommodate that, but it was limited to only them. The new analysis works on all kinds of lints, present and future.
It was basically impossible to fix the old analysis without rewriting it because navigating the module hierarchy must come bottom-up, and if we already have a bottom-up analysis (including syntax analysis because modules can be nested in other syntax elements, including macros), it makes sense to use only this kind of analysis.
Few other bugs (not fundamental ti the previous analysis) are also fixed, e.g. overwriting of lint levels (i.e. `#[allow(lint)] mod foo { #[warn(lint)] mod bar; }`.
feat: render patterns in params for hovering
Fix#17858
This PR introduces an option to [hir-def/src/body/pretty.rs](08c7bbc2db/crates/hir-def/src/body/pretty.rs) to render the result as a single line, which is then reused for rendering patterns in parameters for hovering.
This is a small change, but it was the cause of 90% of the errors in `rust-analyzer diagnostics .` 🫢
With this change and #18085 together, all remaining errors are type errors.
This may mean we can enable more errors, but this is out of scope for this PR.