internal: Expose whether a channel has been dropped in lsp-server errors
Not the best way to expose this, but this should allow us to give somewhat better errors when the initialization request is malformed, as currently that just results in a channel disconnected error instead of the deserialization error. cc https://github.com/rust-lang/rust-analyzer/issues/15859
fix: Fix out-of-bounds panic in some macros due to unhandled self_ref
Fixes#16200
I don't fully understand these changes, I just applied and tested the changes suggested in #16200 and they seem to fix the issue on both the repro and my original project.
internal: Simplify implementation of apply_document_changes
While reading through the code base, I stumbled across a piece of code that I found hard to read despite its simple purpose. This is my attempt at making the code easier to understand for future readers.
I won't be offended if this is too minor and not worth your time.
While reading through the code base, I stumbled across a piece of code that I found hard to read despite its simple purpose. This is my attempt at making the code easier to understand for future readers.
I won't be offended if this is too minor and not worth your time.
fix: update VSCode rust-panic problem matcher
Corrected the `rust-panic` task problem matcher for the VSCode Extension to match the new panic message pattern.
From:
```
thread 'main' panicked at 'PANIC_MESSAGE', src/main.rs:L:C
```
To:
```
thread 'main' panicked at src/main.rs:L:C:
PANIC_MESSAGE
```
Give temporaries in if let guards correct scopes
Temporaries in if-let guards have scopes that escape the match arm, this causes problems because the drops might be for temporaries that are not storage live. This PR changes the scope of temporaries in if-let guards to be limited to the arm:
```rust
_ if let Some(s) = std::convert::identity(&Some(String::new())) => {}
// Temporary for Some(String::new()) is dropped here ^
```
We also now deduplicate temporaries between copies of the guard created for or-patterns:
```rust
// Only create a single Some(String::new()) temporary variable
_ | _ if let Some(s) = std::convert::identity(&Some(String::new())) => {}
```
This changes MIR building to pass around `ExprId`s rather than `Expr`s so that we have a way to index different expressions.
cc #51114Closes#116079
add test case for negative impl
add a small test case to ensure that we don't emit `trait_impl_redundant_assoc_item` diagnostic for negative impl trait
Clean up `check_consts` and misc fixes
1. Remove most of the logic around erroring with trait methods. I have kept the part resolving it to a concrete impl, as that is used for const stability checks.
2. Turning on `effects` causes ICE with generic args, due to `~const Tr` when `Tr` is not `#[const_trait]` tripping up expectation in code that handles generic args, more specifically here:
8681e077b8/compiler/rustc_hir_analysis/src/astconv/generics.rs (L377)
We set `arg_count.correct` to `Err` to correctly signal that an error has already been reported.
3. UI test blesses.
Edit(fmease): Fixes#117244 (UI test is in #119099 for now).
r? compiler-errors
internal: Update world symbols request definiton, prefer focus range for macros
Prior to this, the symbol search would always jump to the defining macro call, not it jumps to the name in the macro call input if possible. This is a large improvement for assoc items in an attribute impl or trait.
Complete exported macros in `#[macro_use($0)]`
Closes https://github.com/rust-lang/rust-analyzer/issues/15657.
Originally added a test case for incomplete input:
```rust
#[test]
fn completes_incomplete_syntax() {
check(
r#"
//- /dep.rs crate:dep
#[macro_export]
macro_rules! foo {
() => {};
}
//- /main.rs crate:main deps:dep
#[macro_use($0
extern crate dep;
"#,
expect![[r#"
ma foo
"#]],
)
}
```
but couldn't make it pass and removed it 😅 Our current recovering logic doesn't work for token trees and for this code:
```rust
#[macro_use(
extern crate lazy_static;
fn main() {}
```
we ended up with this syntax tree:
```
SOURCE_FILE@0..53
ATTR@0..52
POUND@0..1 "#"
L_BRACK@1..2 "["
META@2..52
PATH@2..11
PATH_SEGMENT@2..11
NAME_REF@2..11
IDENT@2..11 "macro_use"
TOKEN_TREE@11..52
L_PAREN@11..12 "("
WHITESPACE@12..13 "\n"
EXTERN_KW@13..19 "extern"
WHITESPACE@19..20 " "
CRATE_KW@20..25 "crate"
WHITESPACE@25..26 " "
IDENT@26..37 "lazy_static"
SEMICOLON@37..38 ";"
WHITESPACE@38..40 "\n\n"
FN_KW@40..42 "fn"
WHITESPACE@42..43 " "
IDENT@43..47 "main"
TOKEN_TREE@47..49
L_PAREN@47..48 "("
R_PAREN@48..49 ")"
WHITESPACE@49..50 " "
TOKEN_TREE@50..52
L_CURLY@50..51 "{"
R_CURLY@51..52 "}"
WHITESPACE@52..53 "\n"
```
Maybe we can try to parse the token tree in `crates/ide-completion/src/context/analysis.rs` but I'm not sure what's the best way forward.
feat: Implement a rust-analyzer span backed proc-macro server mode
This implements the basic span APIs. Basically anything that doesn't require talking back to the client for information access.
This also commits our syntax fixup marker to use an `ErasedAstFileId` of `!0-1` aka `0xffff_fffe`, instead of using a dummy FileId as a marker, as we need that for the `SourceFile` API to be implementable. The reason as to why the server needs to know about this at all is to prevent it from creating invalid fixup spans which could make r-a panic.