feat: Add incorrect case diagnostics for traits and their associated items
Updates incorrect case diagnostic to:
- Check traits and their associated items
- Ignore trait implementations except for patterns in associated function bodies
Also cleans up `hir-ty::diagnostics::decl_check` a bit (mostly to make it a bit more DRY and easier to maintain)
Also fixes: #8675 and fixes: #8225
fix: Recover from missing argument in call expressions
Previously, when parsing an argument list with a missing argument (e.g., `(a, , b)` in `foo(a, , b)`), the parser would stop upon an unexpected token (at the second comma in the example), resulting in an incorrect parse tree.
This commit improves error handling in such cases, ensuring a more accurate parse tree is built.
---
Fixes https://github.com/rust-lang/rust-analyzer/issues/15683.
Previously, when parsing an argument list with a missing argument (e.g.,
`(a, , b)` in `foo(a, , b)`), the parser would stop upon an unexpected
token (at the second comma in the example), resulting in an incorrect
parse tree.
This commit improves error handling in such cases, ensuring a more
accurate parse tree is built.
internal: Update rustc_pattern_analysis dependency
Just bumping the dependency, as I've been making API changes over on the rustc side. More API changes incoming in the coming weeks.
One benefit of this: we no longer abort in the `DeconstructedPat: Debug` impl, which means we can use `tracing` to investigate issues.
Swap Subtree::token_trees from Vec to boxed slice
Performs one of the optimizations suggested in #16325, but a little bit more. Boxed slices guarantee `shrink_to_fit` aswell as saving a pointer width as no capacity has to be stored.
Most of the diff is:
- Changing `vec![]` to `Box::new([])`
- Changing initialize -> fill into fill -> into_boxed_slice
- Working around the lack of an owned iterator or automatic iteration over a `Box<[T]>`
I would like to use my own crate, [small-fixed-array](https://lib.rs/small-fixed-array), although I understand if it isn't mature enough for this. If I'm given the go ahead, I can rework this PR to use it instead.
internal: even more `tracing`
As part of profiling completions, I added some additional spans and moved `TyBuilder::subst_for_def` closer to its usage site (the latter had a small impact on completion performance. Thanks for the tip, Lukas!)
internal: `tracing` improvements and followups
Hi folks! Building on https://github.com/rust-lang/rust-analyzer/pull/16394, I've got a few small tweaks:
- Removed the accidental `mod.rs` usage that I introduced.
- Removed a panic in `pat_analysis.rs`.
- Recorded the event kind in `handle_event` to better distinguish what _kind_ of event is being handled.
- Did a small refactor of `hprof` to have somewhat more linear control flow, and more importantly, write the recorded fields to the output.
The end result is the following:
<img width="1530" alt="A screenshot of Visual Studio Code on a Mac. `hprof.rs` is open, with " src="https://github.com/rust-lang/rust-analyzer/assets/2067774/bd11dde5-b2da-4774-bc38-bcb4772d1192">
This commit also adds `tracing` to NotificationDispatcher/RequestDispatcher,
bumps `rust-analyzer-salsa` to 0.17.0-pre.6, `always-assert` to 0.2, and
removes the homegrown `hprof` implementation in favor of a vendored
tracing-span-tree.
feat: "Normalize import" assist and utilities for normalizing use trees
- Add import/use tree normalization utilities
- Add "normalize import" assist
- Update "merge imports" assist to always apply to the covering use item except for nested use tree selections
- Update "merge imports" assist to avoid adding unnecessary braces when merging nested use tree selections
See [this discussion](https://github.com/rust-lang/rust-analyzer/pull/16372#discussion_r1457244321) for the motivation for the new "normalize import" assist and changes to the "merge imports" assist.
feat: Support for GOTO def from *inside* files included with include! macro
close#14937
Try to implement goto def from *inside* files included with include! macro.
This implementation has two limitations:
1. Only **one** file which calls include! will be tracked. (I think multiple file be included is a rare case and we may let it go for now)
2. Mapping token from included file to macro call file (semantics.rs:646~658) works fine but I am not sure is this the correct way to implement.
`unescape_literal` becomes `unescape_unicode`, and `unescape_c_string`
becomes `unescape_mixed`. Because rfc3349 will mean that C string
literals will no longer be the only mixed utf8 literals.
- Rename it as `MixedUnit`, because it will soon be used in more than
just C string literals.
- Change the `Byte` variant to `HighByte` and use it only for
`\x80`..`\xff` cases. This fixes the old inexactness where ASCII chars
could be encoded with either `Byte` or `Char`.
- Add useful comments.
- Remove `is_ascii`, in favour of `u8::is_ascii`.
fix panic with reference in macro
it panic at `builder.make_mut(segment)`, where segment is from macro expand. And the usage reference in orginal macro call isn't a `PathSegment` so we can't update it in `apply_references`, I can't find a way to deal with it properly so here just filter out the reference in macro. LMK if there are better way to fix this
try to close https://github.com/rust-lang/rust-analyzer/issues/16328
Expand lint tables && make clippy happy 🎉
This PR expands the lint tables on `./Cargo.toml` and thereby makes `cargo clippy` exit successfully! 🎉Fixes#15918
## How?
In the beginning there are some warnings for rustc.
Next, and most importantly, there is the clippy lint table. There are a few sections in there.
First there are the lint groups.
Second there are all lints which are permanently allowed with the reasoning why they are allowed.
Third there is a huge list of temporarily allowed lints. They should be removed in the mid-term, but incur a substantial amount of work, therefore they are allowed for now and can be worked on bit by bit.
Fourth there are all lints which should warn.
Additionally there are a few allow statements in the code for lints which should be permanently allowed in this specific place, but not in the whole code base.
## Follow up work
- [ ] Run clippy in CI
- [ ] Remove tidy test (at least `@Veykril` wrote this in #15017)
- [ ] Work on temporarily allowed lints
internal: Record FnAbi
This unfortunately breaks our lub coercions, so will need to look into fixing that first, though I am not sure what is going wrong where...
Stubbed some stuff out for the time being.
`cargo clippy --fix`
This PR is the result of running `cargo clippy --fix && cargo fmt` in the root of the repository. I did not manually review all the changes, but just skimmed through a few of them. The tests still pass, so it seems fine.
Add a new config to allow renaming of non-local defs
With #15656 we started disallowing renaming of non-local items. Although this makes sense there are some false positives that impacted users' workflows. So this config aims to mitigate this by giving users the liberty to disable this feature.
The reason why this is a draft is that I saw one of the tests fail and I am not sure if the "got" result even syntactically makes sense
Test case is :
```rust
check(
"Baz",
r#"
//- /lib.rs crate:lib new_source_root:library
pub struct S;
//- /main.rs crate:main deps:lib new_source_root:local
use lib::S$0;
"#,
"use lib::Baz;"
);
```
```
Left:
use lib::Baz;
Right:
use lib::Baz;Baz
Diff:
use lib::Baz;Baz
```
The first one succeeds because the functionality is already implemented.
The second one fails and represents the functionality to be implemented
in this PR.
Detect `NulInCStr` error earlier.
By making it an `EscapeError` instead of a `LitError`. This makes it like the other errors produced when checking string literals contents, e.g. for invalid escape sequences or bare CR chars.
NOTE: this means these errors are issued earlier, before expansion, which changes behaviour. It will be possible to move the check back to the later point if desired. If that happens, it's likely that all the string literal contents checks will be delayed together.
One nice thing about this: the old approach had some code in `report_lit_error` to calculate the span of the nul char from a range. This code used a hardwired `+2` to account for the `c"` at the start of a C string literal, but this should have changed to a `+3` for raw C string literals to account for the `cr"`, which meant that the caret in `cr"` nul error messages was one short of where it should have been. The new approach doesn't need any of this and avoids the off-by-one error.
r? ```@fee1-dead```
With #15656 we started disallowing renaming of non-local items.
Although this makes sense there are some false positives that
impacted users' workflows. So this config aims to mitigate this
by giving users the liberty to disable this feature.
fix: better handling of SelfParam in assist 'inline_call'
fix#15470.
The current `inline_call` directly translates `&self` into `let ref this = ...;` and `&mut self` into `let ref mut this = ...;`. However, it does not handle some complex scenarios.
This PR addresses the following transformations (assuming the receiving object is `obj`):
- `self`: `let this = obj`
- `mut self`: `let mut this = obj`
- `&self`: `let this = &obj`
- `&mut self`
+ If `obj` is `let mut obj = ...`, use a mutable reference: `let this = &mut obj`
+ If `obj` is `let obj = &mut ...;`, perform a reborrow: `let this = &mut *obj`
internal: Follow rustfmt's algorithm for ordering imports when ordering and merging use trees
Updates use tree ordering and merging utilities to follow rustfmt's algorithm for ordering imports.
The [rustfmt implementation](6356fca675/src/imports.rs) was used as reference.
Show which roots are being scanned in progress messages
This changes the `Roots Scanned` message to include the directory being scanned.
Before: `Roots Scanned 206/210 (98%)`
After: `Roots Scanned 206/210: .direnv (98%)`
This makes it a lot easier to tell that `rust-analyzer` isn't crashed, it's just trying to scan a huge directory.
See: #12613
By making it an `EscapeError` instead of a `LitError`. This makes it
like the other errors produced when checking string literals contents,
e.g. for invalid escape sequences or bare CR chars.
NOTE: this means these errors are issued earlier, before expansion,
which changes behaviour. It will be possible to move the check back to
the later point if desired. If that happens, it's likely that all the
string literal contents checks will be delayed together.
One nice thing about this: the old approach had some code in
`report_lit_error` to calculate the span of the nul char from a range.
This code used a hardwired `+2` to account for the `c"` at the start of
a C string literal, but this should have changed to a `+3` for raw C
string literals to account for the `cr"`, which meant that the caret in
`cr"` nul error messages was one short of where it should have been. The
new approach doesn't need any of this and avoids the off-by-one error.
fix: Acknowledge `pub(crate)` imports in import suggestions
rust-analyzer has logic that discounts suggesting `use`s for private imports, but that logic is unnecessarily strict - for instance given this code:
```rust
mod foo {
pub struct Foo;
}
pub(crate) use self::foo::*;
mod bar {
fn main() {
Foo$0;
}
}
```
... RA will suggest to add `use crate::foo::Foo;`, which not only makes the code overly verbose (especially in larger code bases), but also is disjoint with what rustc itself suggests.
This commit adjusts the logic, so that `pub(crate)` imports are taken into account when generating the suggestions; considering rustc's behavior, I think this change doesn't warrant any extra configuration flag.
Note that this is my first commit to RA, so I guess the approach taken here might be suboptimal - certainly feels somewhat hacky, maybe there's some better way of finding out the optimal import path 😅
rust-analyzer has logic that discounts suggesting `use`s for private
imports, but that logic is unnecessarily strict - for instance given
this code:
```rust
mod foo {
pub struct Foo;
}
pub(crate) use self::foo::*;
mod bar {
fn main() {
Foo$0;
}
}
```
... RA will suggest to add `use crate::foo::Foo;`, which not only makes
the code overly verbose (especially in larger code bases), but also is
disjoint with what rustc itself suggests.
This commit adjusts the logic, so that `pub(crate)` imports are taken
into account when generating the suggestions; considering rustc's
behavior, I think this change doesn't warrant any extra configuration
flag.
Note that this is my first commit to RA, so I guess the approach taken
here might be suboptimal - certainly feels somewhat hacky, maybe there's
some better way of finding out the optimal import path 😅
minor: Mark unresolved associated item diagnostic as experimental
Per #16327 unresolved associated item has false positives. Mark the diagnostic as experimental until this is more dependable.
Resolve panic in `generate_delegate_methods`
Fixes#16276
This PR addresses two issues:
1. When using `PathTransform`, it searches for the node corresponding to the `path` in the `source_scope` during `make::fn_`. Therefore, we need to perform the transform before `make::fn_` (similar to the problem in issue #15804). Otherwise, even though the tokens are the same, their offsets (i.e., `span`) differ, resulting in the error "Can't find CONST_ARG@xxx."
2. As mentioned in the first point, `PathTransform` searches for the node corresponding to the `path` in the `source_scope`. Thus, when transforming paths, we should update nodes from right to left (i.e., use **reverse of preorder** (right -> left -> root) instead of **postorder** (left -> right -> root)). Reasons are as follows:
In the red-green tree (rowan), we do not store absolute ranges but instead store the length of each node and dynamically calculate offsets (spans). Therefore, when modifying the left-side node (such as nodes are inserted or deleted), it causes all right-side nodes' spans to change. This, in turn, leads to PathTransform being unable to find nodes with the same paths (due to different spans), resulting in errors.
fix: Fix `ast::Path::segments` implementation
calling `ast::Path::segments` on a qualifier currently returns all the segments of the top path instead of just the segments of the qualifier.
The issue can be summarized by the simple failing test below:
```rust
#[test]
fn path_segments() {
//use ra_ap_syntax::ast;
let path: ast::Path = ...; // e.g. `ast::Path` for "foo::bar::item".
let path_segments: Vec<_> = path.segments().collect();
let qualifier_segments: Vec<_> = path.qualifier().unwrap().segments().collect();
assert_eq!(path_segments.len(), qualifier_segments.len() + 1); // Fails because `LHS = RHS`.
}
```
This PR:
- Fixes the implementation of `ast::Path::segments`
- Fixes `ast::Path::segments` callers that either implicitly relied on behavior of previous implementation or exhibited other "wrong" behavior directly related to the result of `ast::Path::segments` (all callers have been reviewed, only one required modification)
- Removes unnecessary (and now unused) `ast::Path::segments` alternatives
fix: Differentiate between vfs config load and file changed events
Kind of fixes https://github.com/rust-lang/rust-analyzer/issues/14730 in a pretty bad way. We need to rethink the vfs-notify layer entirely. For a decent fix.
internal: Only compare relevant parts in `ide::{runnables,inlay_hints}` tests
This PR limits the data being compared. Therefore the tests should be more readable, as well as being more robust to changes to the data structure.
Part of https://github.com/rust-lang/rust-analyzer/issues/14268.
internal: clean and enhance readability for `generate_delegate_trait`
Continue from #16112
This PR primarily involves some cleanup and simple refactoring work, including:
- Adding numerous comments to layer the code and explain the behavior of each step.
- Renaming some variables to make them more sensible.
- Simplify certain operations using a more elegant approach.
The goal is to make this intricate implementation clearer and facilitate future maintenance.
In addition to this, the PR also removes redundant `path_transform` operations for `type_gen_args`.
Taking the example of `impl Trait<T1> for S<S1>`, where `S1` is considered. The struct `S` must be in the file where the user triggers code actions, so there's no need for the `path_transform`. Furthermore, before performing the transform, we've already renamed `S1`, ensuring it won't clash with existing generics parameters. Therefore, there's no need to transform it.
internal: Speed up import searching some more
Pushes the sorting to the caller, meaning additional filtering can be done pre-sorting. Similarly a collect call was pushed to the caller for allowing some other filters to run pre-collecting.
Remove completion limit for trait importing method completions
Fixes https://github.com/rust-lang/rust-analyzer/issues/16075
The < 3 char limit never applied to methods and the amount of completions generated due this is not absolutely massive as not all traits in a project are ever applicable so there is little reason to employ the limit here. Especially as it limits the number of traits we consider, not items (after my changes yesterday), and the number of traits is not the slowing factor here. Tested this in r-a where we have ~800 traits project wide and even when ~260 are applicable there was no noticable slow down from it.
internal: Move query limits to the caller
Prior we calculated up to `limit` entries from a query, then filtered from that leaving us with less entries than the limit in some cases (which might give odd completion behavior due to items disappearing). This changes it so we filter before checking the limit.
Give a userful error when rustc cannot be found in explicit sysroot
Somehow r-a believed that my sysroot was something weird with no rustc. Probably a me issue, but it was impossible to diagnose since r-a just gave me a plain "No such file or directory". Adding this error makes it clear what happened and allows diagnosing the problem.
Somehow r-a believed that my sysroot was something weird with no rustc.
Probably a me issue, but it was impossible to diagnose since r-a just
gave me a plain "No such file or directory". Adding this error makes it
clear what happened and allows diagnosing the problem.
feat: resolve inherent and implemented associated items in docs
This partially fixes#9694.
Supported:
- Trait methods and constants.
* Due to resolution differences pointed out during the review of the PR, trait associated types are _not_ supported.
- Inherent methods, constants and associated types.
* Inherent associated types are a [nightly feature](https://github.com/rust-lang/rust/issues/8995), and are supported with no additional work in this PR.
Screenshot of VS Code running with the change:
<img width="513" alt="image" src="https://github.com/rust-lang/rust-analyzer/assets/7189784/c37ed8b7-b572-4684-8e81-2a817b0027c4">
You can see that the items are resolved (excl. trait associated types) since they are semantically highlighted in the doc comment.
fix: try obligation of `IndexMut` when infer
Closes#15842.
This issue arises because `K` is ambiguous if only inferred from `Index` trait, but is unique if inferred from `IndexMut`, but r-a doesn't use this info.
SymbolInformation::kind is finer-grained than the SCIP symbol suffix.
This also fixes a bug where all type aliases where treated like type
parameters.
```
trait SomeTrait {
type AssociatedType; // ← this is SomeTrait#[AssociatedType]
}
type MyTypeAlias = u8; // ← this used to be [MyTypeAlias]
// and now is MyTypeAlias#
```
To build the SymbolInformation::signature_documentation we need access
to the “label” when building the TokenStaticData, preferably without
any markdown markup.
Therefore this refactors ide::hover::render::definition and its helper
functions to give easier access to the label alone.
For local variables, this gets the moniker from the enclosing
definition and stores it into the TokenStaticData.
Then it builds the scip symbol for that moniker when building the
SymbolInformation.
This is meant to implement SymbolInformation::enclosing_symbol, so we
can build the enclosing symbol from the enclosing moniker without
having the full enclosing token's TokenStaticData.
fix: pick up new names when the name conflicts in 'introduce_named_generic'
Improve generation of names for generic parameters in `introduce_named_generics`.
fix#15731.
### Changes
- Modified `for_generic_parameter` function in `suggest_name.rs` to handle conflicts with existing generic parameters and generate unique names accordingly.
- Update `introduce_named_generic` function and pass existing params to `for_generic_parameter`, enabling the detection and handling of name collisions.
* Extracted the function `for_unique_generic_name` that handling generics with identical names for reusability.
* Renamed `for_generic_params` to `for_impl_trait_as_generic` for clarity
* Added documentations for `for_impl_trait_as_generic` and `for_unique_generic_name`
This commit changes how the expected type is calculated when working
with Fn pointers, making the parenthesis stop vanishing when completing
the function name.
I've been bugged by the behaviour on parenthesis completion for a long
while now. R-a assumes that the `LetStmt` type is the same as the
function type I've just written. Worse is that all parenthesis vanish,
even from functions that have completely different signatures. It will
now verify if the signature is the same.
While working on this, I noticed that record fields behave the same, so
I also made it prioritize the field type instead of the current
expression when possible, but I'm unsure if this is OK, so input is
appreciated.
ImplTraits as return types will still behave weirdly because lowering is
disallowed at the time it resolves the function types.
fix: rewrite code_action `generate_delegate_trait`
I've made substantial enhancements to the "generate delegate trait" code action in rust-analyzer. Here's a summary of the changes:
#### Resolved the "Can’t find CONST_ARG@158..159 in AstIdMap" error
Fix#15804, fix#15968, fix#15108
The issue stemmed from an incorrect application of PathTransform in the original code. Previously, a new 'impl' was generated first and then transformed, causing PathTransform to fail in locating the correct AST node, resulting in an error. I rectified this by performing the transformation before generating the new 'impl' (using make::impl_trait), ensuring a step-by-step transformation of associated items.
#### Rectified generation of `Self` type
`generate_delegate_trait` is unable to properly handle trait with `Self` type.
Let's take the following code as an example:
```rust
trait Trait {
fn f() -> Self;
}
struct B {}
impl Trait for B {
fn f() -> B { B{} }
}
struct S {
b: B,
}
```
Here, if we implement `Trait` for `S`, the type of `f` should be `() -> Self`, i.e. `() -> S`. However we cannot automatically generate a function that constructs `S`.
To ensure that the code action doesn't generate delegate traits for traits with Self types, I add a function named `has_self_type` to handle it.
#### Extended support for generics in structs and fields within this code action
The former version of `generate_delegate_trait` cannot handle structs with generics properly. Here's an example:
```rust
struct B<T> {
a: T
}
trait Trait<T> {
fn f(a: T);
}
impl<T1, T2> Trait<T1> for B<T2> {
fn f(a: T1) -> T2 { self.a }
}
struct A {}
struct S {
b$0 : B<A>,
}
```
The former version will generates improper code:
```rust
impl<T1, T2> Trait<T1, T2> for S {
fn f(&self, a: T1) -> T1 {
<B as Trait<T1, T2>>::f( &self.b , a)
}
}
```
The rewritten version can handle generics properly:
```rust
impl<T1> Trait<T1> for S {
fn f(&self, a: T1) -> T1 {
<B<A> as Trait<T1>>::f(&self.b, a)
}
}
```
See more examples in added unit tests.
I enabled support for generic structs in `generate_delegate_trait` through the following steps (using the code example provided):
1. Initially, to prevent conflicts between the generic parameters in struct `S` and the ones in the impl of `B`, I renamed the generic parameters of `S`.
2. Then, since `B`'s parameters are instantiated within `S`, the original generic parameters of `B` needed removal within `S` (to avoid errors from redundant parameters). An important consideration here arises when Trait and B share parameters in `B`'s impl. In such cases, these shared generic parameters cannot be removed.
3. Next, I addressed the matching of types between `B`'s type in `S` and its type in the impl. Given that some generic parameters in the impl are instantiated in `B`, I replaced these parameters with their instantiated results using PathTransform. For instance, in the example provided, matching `B<A>` and `B<T2>`, where `T2` is instantiated as `A`, I replaced all occurrences of `T2` in the impl with `A` (i.e. apply the instantiated generic arguments to the params).
4. Finally, I performed transformations on each assoc item (also to prevent the initial issue) and handled redundant where clauses.
For a more detailed explanation, please refer to the code and comments. I welcome suggestions and any further questions!
fix: self type replacement in inline-function
Fix#16113, fix#16091
The problem described in this issue actually involves three bugs.
Firstly, when using `ted` to modify the syntax tree, the offset of nodes on the tree changes, which causes the syntax range information from `hir` to become invalid. Therefore, we need to edit the AST after the last usage for `usages_for_locals`.
The second issue is that when inserting nodes, it's necessary to use `clone_subtree` for duplication because the `ted::replace` operation essentially moves a node.
The third issue is that we should use `ancestors_with_macros` instead of `ancestors` to handle impl definition in macros.
I have fixed the three bugs mentioned above and added unit tests.
internal: Migrate assists to the structured snippet API, part 5
Continuing from #15874
Migrates the following assists:
- `extract_variable`
- `generate_function`
- `replace_is_some_with_if_let_some`
- `replace_is_ok_with_if_let_ok`
Don't trim trailing whitespace from doc comments
Don't trim trailing whitespace from doc comments as multiple trailing spaces indicates a hard line break in Markdown.
I'd have liked to add a unit test for `docs_from_attrs`, but couldn't find a reasonable way to get an `&Attrs` object for use in the test.
Fixes#15877.
fix: make callable fields not complete in method access no parens case
Follow up PR for #15879
Fixes the callable field completion appearing in the method access with no parens case.
fix: no code action 'introduce_named_generic' for impl inside types
Fix#15734.
### Changes Made
- Find params in `ancestors` instead of just `parent`
- Added tests (`replace_impl_with_mut` and `replace_impl_inside`)
fix: Correct references from `rust-analyzer.cargo.check` to `rust-analyzer.check`
When reading the manual, I noticed that the documentation referenced configurations that have since been renamed. This PR updates those references to their new names.
While reading through the code base, I stumbled across a piece of code that I found hard to read despite its simple purpose. This is my attempt at making the code easier to understand for future readers.
I won't be offended if this is too minor and not worth your time.
internal: Update world symbols request definiton, prefer focus range for macros
Prior to this, the symbol search would always jump to the defining macro call, not it jumps to the name in the macro call input if possible. This is a large improvement for assoc items in an attribute impl or trait.
Complete exported macros in `#[macro_use($0)]`
Closes https://github.com/rust-lang/rust-analyzer/issues/15657.
Originally added a test case for incomplete input:
```rust
#[test]
fn completes_incomplete_syntax() {
check(
r#"
//- /dep.rs crate:dep
#[macro_export]
macro_rules! foo {
() => {};
}
//- /main.rs crate:main deps:dep
#[macro_use($0
extern crate dep;
"#,
expect![[r#"
ma foo
"#]],
)
}
```
but couldn't make it pass and removed it 😅 Our current recovering logic doesn't work for token trees and for this code:
```rust
#[macro_use(
extern crate lazy_static;
fn main() {}
```
we ended up with this syntax tree:
```
SOURCE_FILE@0..53
ATTR@0..52
POUND@0..1 "#"
L_BRACK@1..2 "["
META@2..52
PATH@2..11
PATH_SEGMENT@2..11
NAME_REF@2..11
IDENT@2..11 "macro_use"
TOKEN_TREE@11..52
L_PAREN@11..12 "("
WHITESPACE@12..13 "\n"
EXTERN_KW@13..19 "extern"
WHITESPACE@19..20 " "
CRATE_KW@20..25 "crate"
WHITESPACE@25..26 " "
IDENT@26..37 "lazy_static"
SEMICOLON@37..38 ";"
WHITESPACE@38..40 "\n\n"
FN_KW@40..42 "fn"
WHITESPACE@42..43 " "
IDENT@43..47 "main"
TOKEN_TREE@47..49
L_PAREN@47..48 "("
R_PAREN@48..49 ")"
WHITESPACE@49..50 " "
TOKEN_TREE@50..52
L_CURLY@50..51 "{"
R_CURLY@51..52 "}"
WHITESPACE@52..53 "\n"
```
Maybe we can try to parse the token tree in `crates/ide-completion/src/context/analysis.rs` but I'm not sure what's the best way forward.
fix: Correctly set and mark the proc-macro spans
This slows down analysis by 2-3s on self for me unfortunately (~2.5% slowdown)
Noisy diff due to two simple refactoring in the first 2 commits. Relevant changes are [7d762d1](7d762d18ed) and [1e1113c](1e1113cf5f) which introduce def site spans and correct marking for proc-macros respectively.