feat: Add incorrect case diagnostics for enum variant fields and all variables/params
Updates the incorrect case diagnostic to check:
1. Fields of enum variants. Example:
```rust
enum Foo {
Variant { nonSnake: u8 }
}
```
2. All variable bindings, instead of just let bindings and certain match arm patters. Examples:
```rust
match 1 { nonSnake => () }
match 1 { nonSnake @ 1 => () }
match 1 { nonSnake1 @ nonSnake2 => () } // slightly cursed, but these both introduce new
// bindings that are bound to the same value.
const ONE: i32 = 1;
match 1 { nonSnake @ ONE } // ONE is ignored since it is not a binding
match Some(1) { Some(nonSnake) => () }
struct Foo { field: u8 }
match (Foo { field: 1 } ) {
Foo { field: nonSnake } => ();
}
struct Foo { nonSnake: u8 } // diagnostic here, at definition
match (Foo { nonSnake: 1 } ) { // no diagnostic here...
Foo { nonSnake } => (); // ...or here, since these are not where the name is introduced
}
for nonSnake in [] {}
struct Foo(u8);
for Foo(nonSnake) in [] {}
```
3. All parameter bindings, instead of just top-level binding identifiers. Examples:
```rust
fn func(nonSnake: u8) {} // worked before
struct Foo { field: u8 }
fn func(Foo { field: nonSnake }: Foo) {} // now get diagnostic for nonSnake
```
This is accomplished by changing the way binding identifier patterns are filtered:
- Previously, all binding idents were skipped, except a few classes of "good" binding locations that were checked.
- Now, all binding idents are checked, except field shorthands which are skipped.
Moving from a whitelist to a blacklist potentially makes the analysis more brittle:
If new pattern types are added in the future where ident pats don't introduce new names, then they may incorrectly create diagnostics.
But the benefit of the blacklist approach is simplicity: I think a whitelist approach would need to recursively visit patterns to collect renaming candidates?
Trigger VSCode to rename after extract variable assist is applied
When the user applies the "Extract Variable" assist, the cursor is
positioned at the newly inserted variable. This commit adds a command
to the assist that triggers the rename action in VSCode. This way, the
user can quickly rename the variable after applying the assist.
Fixes part of: #17579https://github.com/user-attachments/assets/4cf38740-ab22-4b94-b0f1-eddd51c26c29
I haven't yet looked at the module or function extraction assists yet.
When the user applies the "Extract Variable" assist, the cursor is
positioned at the newly inserted variable. This commit adds a command
to the assist that triggers the rename action in VSCode. This way, the
user can quickly rename the variable after applying the assist.
Fixes part of: #17579
Add an option to use "::" for the external crate prefix.
Fixes#11823 .
Hi I'm very new to rust-analyzer and not sure how the review process are. Can somebody take a look at this PR? thanks!
Quality of life improvements to term search
Basically two things:
- Allow optionally disabling "borrow checking" restrictions on term search code assists. Sometimes it is better to get invalid suggestions and fix borrow checking issues later...
- Remove explicit generics in generated expressions. I find it quite rare that one writes `None::<T>` instead of `None`.
fix: Improve hover text in unlinked file diagnostics
Use full sentences, and mention how to disable the diagnostic if users are intentionally working on unowned files.
![Screenshot 2024-06-12 at 5 55 48 PM](https://github.com/rust-lang/rust-analyzer/assets/70800/c91ee1ed-1c72-495a-9ee3-9e360a5c6977)
(Full disclosure: I've tested a rust-analyzer build in VS Code, but the pop-up logic is currently disabled due to #17062, so I haven't tested that.)
This partially reverts #17350, based on the feedback in #17397.
If we don't have an autofix, it's more annoying to highlight the whole line.
This heuristic fixes the diagnostic overwhelming the user during startup.
Currently, rust-analyzer highlights the entire region when a `cfg` is
inactive (e.g. `#[cfg(windows)]` on a Linux machine). However,
unlinked files only highlight the first three characters of the file.
This was introduced in #8444, but users have repeatedly found
themselves with no rust-analyzer support for a file and unsure
why (see e.g. #13226 and the intentionally prominent pop-up added in
PR #14366).
(Anecdotally, we see this issue bite our users regularly, particularly
people new to Rust.)
Instead, highlight the entire inactive file, but mark it as all as
unused. This allows users to hover and run the quickfix from any line.
Whilst this is marginally more prominent, it's less invasive than a
pop-up, and users do want to know why they're getting no rust-analyzer
support in certain files.
Don't mark `#[rustc_deprecated_safe_2024]` functions as unsafe
`std::env::set_var` will be unsafe in edition 2024, but not before it. I couldn't quite figure out how to check for the span properly, so for now we just turn the false positives into false negatives, which are less bad.
`std::env::set_var` will be unsafe in edition 2024, but not before it.
I couldn't quite figure out how to check for the span properly, so for now
we just turn the false positives into false negatives, which are less bad.
fix: Replace Just the variable name in Unused Variable Diagnostic Fix
Changes Unused Variable diagnostic to just look at the variable name, not the entire syntax range.
Also added a test for an unused variable in an array destructure.
Closes#17053
internal: Enforce utf8 paths
Cargo already requires this, and I highly doubt r-a works with non-utf8 paths generally either. This just makes dealing with paths a lot easier.
Add fuel to match checking
Exhaustiveness checking is NP-hard hence can take extremely long to check some specific matches. This PR makes ehxaustiveness bail after a set number of steps. I chose a bound that takes ~100ms on my machine, which should be more than enough for normal matches.
I'd like someone with less recent hardware to run the test to see if that limit is low enough for them. Also curious if the r-a team thinks this is a good ballpark or if we should go lower/higher. I don't have much data on how complex real-life matches get, but we can definitely go lower than `500 000` steps.
The second commit is a drive-by soundness fix which doesn't matter much today but will matter once `min_exhaustive_patterns` is stabilized.
Fixes https://github.com/rust-lang/rust-analyzer/issues/9528 cc `@matklad`
fix: Ignore some warnings if they originate from within macro expansions
These tend to be annoying noise as we can't handle `allow`s for them properly for the time being.
internal: Compute syntax validation errors on demand
The LRU cache causes us to re-parse trees quite often, yet we don't use the validation errors at all. With this we push calculating them off to the caller who is interested in them.
fix: Don't panic on synthetic syntax in inference diagnostics
Temporary fix for https://github.com/rust-lang/rust-analyzer/issues/16682
We ought to rethink how we attach diagnostics to things, as IDs don't work for `format_args` like that!
feat: Introduce term search to rust-analyzer
# Introduce term search to `rust-analyzer`
_I've marked this as draft as there might be some shortcomings, please point them out so I can fix them. Otherwise I think it is kind of ready as I think I'll rather introduce extra functionality in follow up PRs._
Term search (or I guess expression search for rust) is a technique to generate code by basically making the types match.
Consider the following program
```rust
fn wrap(arg: i32) -> Option<i32> {
todo!();
}
```
From the types of values in scope and constructors of `Option`, we can produce the expected result of wrapping the argument in `Option`
Dependently typed languages such as `Idris2` and `Agda` have similar tools to help with proofs, but this can be also used in everyday development as a "auto-complete".
# Demo videos
https://github.com/rust-lang/rust-analyzer/assets/19900308/7b68a1b7-7dba-4e31-9221-6c7485e77d88https://github.com/rust-lang/rust-analyzer/assets/19900308/0fae530a-aabb-4b28-af71-e19f8d3d64b2
# What does it currently do
- It works well with locals, free functions, type constructors and non-static impl methods that take items by value.
- Works with functions/methods that take shared references, but not with unique references (very conservative).
- Can handle projections to struct fields (eg. `foo.bar.baz`) but this might me more conservative than it has to be to avoid conflicting with borrow checker
- Should create only valid programs (no type / borrow checking errors). Tested with `rust-analyzer analysis-stats /path/to/ripgrep/Cargo.toml --run-term-search --validate-term-search` (basically running `cargo check` on all of the generated programs and only error seems to be due to type inference which is more of issue of testing method.
# Performace / fitness
```txt
ripgrep (latest)
Tail Expr syntactic hits: 130/1692 (7%)
Tail Exprs found: 523/1692 (30%)
Term search avg time: 9ms
Term search: 15.64s, 97ginstr, 8mb
rust-analyzer (on this branch)
Tail Expr syntactic hits: 804/13860 (5%)
Tail Exprs found: 6757/13860 (48%)
Term search avg time: 78ms
Term search: 1088.23s, 6765ginstr, 98mb
```
Highly generic code seems to blow up the search space so currently the amount of generics allowed is functions/methods is limited down to 0 (1 didn't give much improvement and 2 is already like 0.5+s search time)
# Plans for the future (not in this PR)
- ``~~Add impl methods that do not take `self` type (should be quite straight forward)~~ Done
- Be smarter (aka less restrictive) about borrow checking - this seems quite hard but since the current approach is rather naive I think some easy improvement is available.
- ``~~See if it works as a autocomplete while typing~~ Done
_Feel free to ask questions / point of shortcoming either here or on Zulip, I'll be happy to address them. I'm doing this as part of my MSc thesis so I'll be working on it till summer anyway 😄_