Fix off-by-one error converting to LSP UTF8 offsets with multi-byte char
On this file,
```rust
fn main() {
let 된장 = 1;
}
```
when using `"positionEncodings":["utf-16"]` I get an "unused variable" diagnostic on the variable
name (codepoint offset range `8..10`). So far so good.
When using `positionEncodings":["utf-8"]`, I expect to get the equivalent range in bytes (LSP:
"Character offsets count UTF-8 code units (e.g bytes)."), which is `8..14`, because both
characters are 3 bytes in UTF-8. However I actually get `10..14`.
Looks like this is because we accidentally treat a 1-based index as an offset value: when
converting from our internal char-indices to LSP byte offsets, we look at one character to many.
This causes wrong results if the extra character is a multi-byte one, such as when computing
the start coordinate of 된장.
Fix that by actually passing an offset. While at it, fix the variable name of the line number,
which is not an offset (yet).
Originally reported at https://github.com/kakoune-lsp/kakoune-lsp/issues/740
On this file,
```rust
fn main() {
let 된장 = 1;
}
```
when using `"positionEncodings":["utf-16"]` I get an "unused variable" diagnostic on the variable
name (codepoint offset range `8..10`). So far so good.
When using `positionEncodings":["utf-8"]`, I expect to get the equivalent range in bytes (LSP:
"Character offsets count UTF-8 code units (e.g bytes)."), which is `8..14`, because both
characters are 3 bytes in UTF-8. However I actually get `10..14`.
Looks like this is because we accidentally treat a 1-based index as an offset value: when
converting from our internal char-indices to LSP byte offsets, we look at one character to many.
This causes wrong results if the extra character is a multi-byte one, such as when computing
the start coordinate of 된장.
Fix that by actually passing an offset. While at it, fix the variable name of the line number,
which is not an offset (yet).
Originally reported at https://github.com/kakoune-lsp/kakoune-lsp/issues/740
Changed the completion item source_range to match
the replaced text. Though in VS Code it may not be
disturbing because the snippet is previewed in a
box, but in Helix editor, it's previewed by applying
the main text edit.
pattern analysis: Use contiguous indices for enum variants
The main blocker to using the in-tree version of the `pattern_analysis` crate is that rustc requires enum indices to be contiguous because it uses `IndexVec`/`BitSet` for performance. Currently we swap these out for `FxHashMap`/`FxHashSet` when the `rustc` feature is off, but we can't do that if we use the in-tree crate.
This PR solves the problem by using contiguous indices on the r-a side too.
Fix crate IDs when multiple workspaces are loaded
Previously, we assumed that the crate numbers in a `rust-project.json` always matched the `CrateId` values in the crate graph. This isn't true when there are multiple workspaces, because the crate graphs are merged and the `CrateId` values in the merged graph are different.
This broke flycheck (see first commit), because we were unable to find the workspace when a file changed, so we every single flycheck, producing duplicate compilation errors.
Instead, use the crate root module path to look up the relevant flycheck. This makes `ProjectWorkspace::Json` consistenet with `ProjectWorkspace::Cargo`.
Also, define a separate JSON crate number type, to prevent bugs like this happening again.
feat: Add `rust-analyzer.cargo.allTargets` to configure passing `--all-targets` to cargo invocations
Closes#16859
## Unresolved question:
Should this be a setting for build scripts only ? All the other `--all-targets` I found where already covered by `checkOnSave.allTargets`
Handle panicking like rustc CTFE does
Instead of using `core::fmt::format` to format panic messages, which may in turn panic too and cause recursive panics and other messy things, redirect `panic_fmt` to `const_panic_fmt` like CTFE, which in turn goes to `panic_display` and does the things normally. See the tests for the full call stack.
The tests don't work yet, I probably missed something in minicore.
fixes#16907 in my local testing, I also need to add a test for it
fix: Prevent stack overflow in recursive const types
In the evaluation of const values of recursive types certain declarations could cause an endless call-loop within the interpreter (hir-ty’s create_memory_map), which would lead to a stack overflow.
This commit adds a check that prevents values that contain an address in their value (such as TyKind::Ref) from being allocated at the address they contain.
The commit also adds a test for this edge case.
Instead of using `core::fmt::format` to format panic messages, which may in turn
panic too and cause recursive panics and other messy things, redirect
`panic_fmt` to `const_panic_fmt` like CTFE, which in turn goes to
`panic_display` and does the things normally. See the tests for the full
call stack.