internal: Reply to requests with defaults when vfs is still loading
There is no reason for us to hit the database with queries when we certainly haven't reached a stable state yet. Instead we just reply with default request results until we are in a state where we can do meaningful work. This should save us from wasting resources while starting up at worst, and at best save us from creating query and interning entries that are non-meaningful which ultimately just end up wasting memory.
internal: Optimize the usage of channel senders
Used `Sender` directly instead of a boxed closure. There is no need to use the boxed closure. This also allows the caller to decide to do something other than `unwrap` (not a fan of it BTW).
miri-script: use --remap-path-prefix to print errors relative to the right root
Inspired by https://github.com/rust-lang/rust-clippy/pull/13232, this makes it so that when cargo-miri fails to build, `./miri check` will print errors with paths like `cargo-miri/src/setup.rs`. That means we can get rid of the miri-symlink-hacks and instead tell RA to just always invoke the `./miri clippy` script just once, in the root.
This means that we can no longer share a target dir between cargo-miri and miri as the RUSTFLAGS are different to crates that are shared in the dependency tree need to be built twice with two different flags. `miri-script` hence now has to set the MIRI environment variable to tell the `cargo miri setup` invocation where to find Miri.
I also made it so that errors in miri-script itself are properly shown in RA, for which the `./miri` shell wrapper needs to set the right flags.
Reuse recursion limit as expansion limit
A configurable recursion limit was introduced by looking at the recursion_limit crate attribute. Instead of relying on a global constant we will reuse this value for expansion limit as well.
Addresses: https://github.com/rust-lang/rust-analyzer/issues/8640#issuecomment-2271740272
feat: Implement TAIT and fix ATPIT a bit
Closes#16296 (Commented on the issue)
In #16852, I implemented ATPIT, but as I didn't discern ATPIT and other non-assoc TAIT, I guess that it has been working for some TAITs.
As the definining usage of TAIT requires it should be appear in the Def body's type(const blocks' type annotations or functions' signatures), this can be done in simlilar way with ATPIT
And this PR also corrects some defining-usage resolution for ATPIT
fix: #128855 Ensure `Guard`'s `drop` method is removed at `opt-level=s` for `…
fix: #128855
…Copy` types
Added `#[inline]` to the `drop` method in the `Guard` implementation to ensure that the method is removed by the compiler at optimization level `opt-level=s` for `Copy` types. This change aims to align the method's behavior with optimization expectations and ensure it does not affect performance.
r? `@scottmcm`
Apply "polymorphization at home" to RawVec
The idea here is to move all the logic in RawVec into functions with explicit size and alignment parameters. This should eliminate all the fussing about how tweaking RawVec code produces large swings in compile times.
This uncovered https://github.com/rust-lang/rust-clippy/issues/12979, so I've modified the relevant test in a way that tries to preserve the spirit of the test without tripping the ICE.
Fix `ElaborateBoxDerefs` on debug varinfo
Slightly simplifies the `ElaborateBoxDerefs` pass to fix cases where it was applying the wrong projections to debug var infos containing places that deref boxes.
From what I can tell[^1], we don't actually have any tests (or code anywhere, really) that exercise `debug x => *(...: Box<T>)`, and it's very difficult to trigger this in surface Rust, so I wrote a custom MIR test.
What happens is that the pass was turning `*(SOME_PLACE: Box<T>)` into `*(*((((SOME_PLACE).0: Unique<T>).0: NonNull<T>).0: *const T))` in debug var infos. In particular, notice the *double deref*, which was wrong.
This is the root cause of #128554, so this PR fixes#128554 as well. The reason that async closures was affected is because of the way that we compute the [`ByMove` body](https://github.com/rust-lang/rust/blob/master/compiler/rustc_mir_transform/src/coroutine/by_move_body.rs), which resulted in `*(...: Box<T>)` in debug var info. But this really has nothing to do with async closures.
[^1]: Validated by literally replacing the `if elem == PlaceElem::Deref && base_ty.is_box() { ... }` innards with a `panic!()`, which compiled all of stage2 without panicking.
Improve `Ord` violation help
Recent experience in #128083 showed that the panic message when an Ord violation is detected by the new sort implementations can be confusing. So this PR aims to improve it, together with minor bug fixes in the doc comments for sort*, sort_unstable* and select_nth_unstable*.
Is it possible to get these changes into the 1.81 release? It doesn't change behavior and would greatly help when users encounter this panic for the first time, which they may after upgrading to 1.81.
Tagging `@orlp`
Stabilize `min_exhaustive_patterns`
## Stabilisation report
I propose we stabilize the [`min_exhaustive_patterns`](https://github.com/rust-lang/rust/issues/119612) language feature.
With this feature, patterns of empty types are considered unreachable when matched by-value. This allows:
```rust
enum Void {}
fn foo() -> Result<u32, Void>;
fn main() {
let Ok(x) = foo();
// also
match foo() {
Ok(x) => ...,
}
}
```
This is a subset of the long-unstable [`exhaustive_patterns`](https://github.com/rust-lang/rust/issues/51085) feature. That feature is blocked because omitting empty patterns is tricky when *not* matched by-value. This PR stabilizes the by-value case, which is not tricky.
The not-by-value cases (behind references, pointers, and unions) stay as they are today, e.g.
```rust
enum Void {}
fn foo() -> Result<u32, &Void>;
fn main() {
let Ok(x) = foo(); // ERROR: missing `Err(_)`
}
```
The consequence on existing code is some extra "unreachable pattern" warnings. This is fully backwards-compatible.
### Comparison with today's rust
This proposal only affects match checking of empty types (i.e. types with no valid values). Non-empty types behave the same with or without this feature. Note that everything below is phrased in terms of `match` but applies equallly to `if let` and other pattern-matching expressions.
To be precise, a visibly empty type is:
- an enum with no variants;
- the never type `!`;
- a struct with a *visible* field of a visibly empty type (and no #[non_exhaustive] annotation);
- a tuple where one of the types is visibly empty;
- en enum with all variants visibly empty (and no `#[non_exhaustive]` annotation);
- a `[T; N]` with `N != 0` and `T` visibly empty;
- all other types are nonempty.
(An extra change was proposed below: that we ignore #[non_exhaustive] for structs since adding fields cannot turn an empty struct into a non-empty one)
For normal types, exhaustiveness checking requires that we list all variants (or use a wildcard). For empty types it's more subtle: in some cases we require a `_` pattern even though there are no valid values that can match it. This is where the difference lies regarding this feature.
#### Today's rust
Under today's rust, a `_` is required for all empty types, except specifically: if the matched expression is of type `!` (the never type) or `EmptyEnum` (where `EmptyEnum` is an enum with no variants), then the `_` is not required.
```rust
let foo: Result<u32, !> = ...;
match foo {
Ok(x) => ...,
Err(_) => ..., // required
}
let foo: Result<u32, &!> = ...;
match foo {
Ok(x) => ...,
Err(_) => ..., // required
}
let foo: &! = ...;
match foo {
_ => ..., // required
}
fn blah(foo: (u32, !)) {
match foo {
_ => ..., // required
}
}
unsafe {
let ptr: *const ! = ...;
match *ptr {} // allowed
let ptr: *const (u32, !) = ...;
match *ptr {
(x, _) => { ... } // required
}
let ptr: *const Result<u32, !> = ...;
match *ptr {
Ok(x) => { ... }
Err(_) => { ... } // required
}
}
```
#### After this PR
After this PR, a pattern of an empty type can be omitted if (and only if):
- the match scrutinee expression has type `!` or `EmptyEnum` (like before);
- *or* the empty type is matched by value (that's the new behavior).
In all other cases, a `_` is required to match on an empty type.
```rust
let foo: Result<u32, !> = ...;
match foo {
Ok(x) => ..., // `Err` not required
}
let foo: Result<u32, &!> = ...;
match foo {
Ok(x) => ...,
Err(_) => ..., // required because `!` is under a dereference
}
let foo: &! = ...;
match foo {
_ => ..., // required because `!` is under a dereference
}
fn blah(foo: (u32, !)) {
match foo {} // allowed
}
unsafe {
let ptr: *const ! = ...;
match *ptr {} // allowed
let ptr: *const (u32, !) = ...;
match *ptr {
(x, _) => { ... } // required because the matched place is under a (pointer) dereference
}
let ptr: *const Result<u32, !> = ...;
match *ptr {
Ok(x) => { ... }
Err(_) => { ... } // required because the matched place is under a (pointer) dereference
}
}
```
### Documentation
The reference does not say anything specific about exhaustiveness checking, hence there is nothing to update there. The nomicon does, I opened https://github.com/rust-lang/nomicon/pull/445 to reflect the changes.
### Tests
The relevant tests are in `tests/ui/pattern/usefulness/empty-types.rs`.
### Unresolved Questions
None that I know of.
try-job: dist-aarch64-apple
A configurable recursion limit was introduced by looking at the
recursion_limit crate attribute. Instead of relying on a global constant
we will reuse this value for expansion limit as well.