Support GATs in bounds for associated types
Chalk has a dedicated IR for bounds on trait associated type: `rust_ir::InlineBound`. We have been failing to convert GATs inside those bounds from our IR to chalk IR. This PR provides an easy fix for it: properly take GATs into account during the conversion.
Map our diagnostics to rustc and clippy's ones
And control their severity by lint attributes `#[allow]`, `#[deny]` and ... .
It doesn't work with proc macros and I would like to fix that before merge but I don't know how to do it.
internal: Format let-else
As nightly finally got support for it I went ahead and formatted r-a with the latest nightly, then with the latest stable (in case other stuff changed)
Split out project loading capabilities from rust-analyzer crate
External tools currently depend on the entire lsp infra for no good reason so let's lift that out so those tools have something better to depend on
Clean up `ImportMap`
There are several things in `hir_def::import_map` that are never used. This PR removes them and restructures the code. Namely:
- Removes `Query::name_only`, because it's *always* true.
- Because of this, we never took advantage of storing items' full path. This PR removes `ImportPath` and changes `ImportInfo` to only store items' name, which should reduce the memory consumption to some extent.
- Removes `SearchMode::Contains` for `Query` because it's never used.
- Merges `Query::assoc_items_only` and `Query::exclude_import_kinds` into `Query::assoc_mode`, because the latter is never used besides filtering associated items out.
Best reviewed one commit at a time. I made sure each commit passes full test suite. I can squash the first three commits if needed.
Use anonymous lifetime where possible
Because anonymous lifetimes are *super* cool.
More seriously, I believe anonymous lifetimes, especially those in impl headers, reduce cognitive load to a certain extent because they usually signify that they are not relevant in the signature of the methods within (or that we can apply the usual lifetime elision rules even if they are relevant).
Fix runnable detection for `#[tokio::test]`
fix#15141
It is hacky, and it wouldn't work for e.g. this case:
```Rust
use ::core::prelude;
#[prelude::v1::test]
fn foo() {
}
```
But it works for the tokio case. We should use the name resolution here somehow, and after that we should probably also get rid of the ast based `test_related_attribute` function.
internal: add `library` fixture meta
Currently, there is no way to specify `CrateOrigin` of a file fixture ([this] might be a bug?). This PR adds `library` meta to explicitly specify the fixture to be `CrateOrigin::Library` and also makes sure crates that belong to a library source root are set `CrateOrigin::Library`.
(`library` isn't really the best name. It essentially means that the crate is outside workspace but `non_workspace_member` feels a bit too long. Suggestions for the better name would be appreciated)
Additionally:
- documents the fixture meta syntax as thoroughly as possible
- refactors relevant code
[this]: 4b06d3c595/crates/base-db/src/fixture.rs (L450)
Fix `self` and `super` path resolution in block modules
This PR fixes `self` and `super` path resolution with block modules involved.
Previously, we were just going up the module tree count-of-`super` times without considering block modules in the way, and then if we ended up in a block `DefMap`, we adjust "to the containing crate-rooted module". While this seems to work in most real-world cases, we failed to resolve them within peculiar module structures.
`self` and `super` should actually be resolved to the nearest non-block module, and the paths don't necessarily resolve to a crate-rooted module. This PR makes sure every `self` and `super` segment in paths are resolved to a non-block module.
internal: support `#[rustc_coinductive]`
rust-lang/rust#100386 changed the trait solver so that `Sized` is treated as coinductive trait, just like auto traits. This is now controlled by the perma-unstable `#[rustc_coinductive]` attribute (rust-lang/rust#108033), which this PR adds support for.
In practice, I don't think this matters much if at all. Currently we don't give chalk enough information so chalk cannot precisely (dis)prove `Sized` bounds.