Support clobber_abi and vector registers (clobber-only) in PowerPC inline assembly
This supports `clobber_abi` which is one of the requirements of stabilization mentioned in #93335.
This basically does a similar thing I did in https://github.com/rust-lang/rust/pull/130630 to implement `clobber_abi` for s390x, but for powerpc/powerpc64/powerpc64le.
- This also supports vector registers (as `vreg`) as clobber-only, which need to support clobbering of them to implement `clobber_abi`.
- `vreg` should be able to accept `#[repr(simd)]` types as input/output if the unstable `altivec` target feature is enabled, but `core::arch::{powerpc,powerpc64}` vector types, `#[repr(simd)]`, and `core::simd` are all unstable, so the fact that this is currently a clobber-only should not be considered a blocker of clobber_abi implementation or stabilization. So I have not implemented it in this PR.
- See https://github.com/rust-lang/rust/pull/131551 (which is based on this PR) for a PR to implement this.
- (I'm not sticking to whether that PR should be a separate PR or part of this PR, so I can merge that PR into this PR if needed.)
Refs:
- PPC32 SysV: Section "Function Calling Sequence" in [System V Application Binary Interface PowerPC Processor Supplement](https://refspecs.linuxfoundation.org/elf/elfspec_ppc.pdf)
- PPC64 ELFv1: Section 3.2 "Function Calling Sequence" in [64-bit PowerPC ELF Application Binary Interface Supplement](https://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#FUNC-CALL)
- PPC64 ELFv2: Section 2.2 "Function Calling Sequence" in [64-Bit ELF V2 ABI Specification](https://openpowerfoundation.org/specifications/64bitelfabi/)
- AIX: [Register usage and conventions](https://www.ibm.com/docs/en/aix/7.3?topic=overview-register-usage-conventions), [Special registers in the PowerPC®](https://www.ibm.com/docs/en/aix/7.3?topic=overview-special-registers-in-powerpc), [AIX vector programming](https://www.ibm.com/docs/en/aix/7.3?topic=concepts-aix-vector-programming)
- Register definition in LLVM: https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/PowerPC/PPCRegisterInfo.td#L189
If I understand the above four ABI documentations correctly, except for the PPC32 SysV's VR (Vector Registers) and 32-bit AIX (currently not supported by rustc)'s r13, there does not appear to be important differences in terms of implementing `clobber_abi`:
- The above four ABIs are consistent about FPR (0-13: volatile, 14-31: nonvolatile), CR (0-1,5-7: volatile, 2-4: nonvolatile), XER (volatile), and CTR (volatile).
- As for GPR, only the registers we are treating as reserved are slightly different
- r0, r3-r12 are volatile
- r1(sp, reserved), r14-31 are nonvolatile
- r2(reserved) is TOC pointer in PPC64 ELF/AIX, system-reserved register in PPC32 SysV (AFAIK used as thread pointer in Linux/BSDs)
- r13(reserved for non-32-bit-AIX) is thread pointer in PPC64 ELF, small data area pointer register in PPC32 SysV, "reserved under 64-bit environment; not restored across system calls[^r13]" in AIX)
- As for FPSCR, volatile in PPC64 ELFv1/AIX, some fields are volatile only in certain situations (rest are volatile) in PPC32 SysV/PPC64 ELFv2.
- As for VR (Vector Registers), it is not mentioned in PPC32 SysV, v0-v19 are volatile in both in PPC64 ELF/AIX, v20-v31 are nonvolatile in PPC64 ELF, reserved or nonvolatile depending on the ABI ([vec-extabi vs vec-default in LLVM](https://reviews.llvm.org/D89684), we are [using vec-extabi](https://github.com/rust-lang/rust/pull/131341#discussion_r1797693299)) in AIX:
> When the default Vector enabled mode is used, these registers are reserved and must not be used.
> In the extended ABI vector enabled mode, these registers are nonvolatile and their values are preserved across function calls
I left [FIXME comment about PPC32 SysV](https://github.com/rust-lang/rust/pull/131341#discussion_r1790496095) and added ABI check for AIX.
- As for VRSAVE, it is not mentioned in PPC32 SysV, nonvolatile in PPC64 ELFv1, reserved in PPC64 ELFv2/AIX
- As for VSCR, it is not mentioned in PPC32 SysV/PPC64 ELFv1, some fields are volatile only in certain situations (rest are volatile) in PPC64 ELFv2, volatile in AIX
We are currently treating r1-r2, r13 (non-32-bit-AIX), r29-r31, LR, CTR, and VRSAVE as reserved.
We are currently not processing anything about FPSCR and VSCR, but I feel those are things that should be processed by `preserves_flags` rather than `clobber_abi` if we need to do something about them. (However, PPCRegisterInfo.td in LLVM does not seem to define anything about them.)
Replaces #111335 and #124279
cc `@ecnelises` `@bzEq` `@lu-zero`
r? `@Amanieu`
`@rustbot` label +O-PowerPC +A-inline-assembly
[^r13]: callee-saved, according to [LLVM](6a6af0246b/llvm/lib/Target/PowerPC/PPCCallingConv.td (L322)) and [GCC](a9173a50e7/gcc/config/rs6000/rs6000.h (L859)).
Make `std::os::darwin` public
I'm not sure of the reasoning behind them not being public before, but I think they should be, just like `std::os::ios` and `std::os::macos` are public.
Additionally, I've merged their source code, as it was otherwise just a bunch of unnecessary duplication.
Ultimately, I've done this PR to fix `./x build library --target=aarch64-apple-tvos,aarch64-apple-watchos,aarch64-apple-visionos`, as that currently fails because of dead code warnings.
Since you reviewed https://github.com/rust-lang/rust/pull/121419
r? davidtwco
Fixes https://github.com/rust-lang/rust/issues/121640.
`@rustbot` label O-tvos O-watchos O-visionos
PassWrapper: adapt for llvm/llvm-project@b01e2a8b56
A boolean turned into an enum. None matches the old behavior of false, so we pass that.
`@rustbot` label: +llvm-main
Some where clause lowering simplifications
Rename `PredicateFilter::SelfThatDefines` to `PredicateFilter::SelfTraitThatDefines` to make it clear that it's only concerned with converting *traits*, and make it do a bit less work when converting bounds.
Also, make the predicate filter matching in `probe_ty_param_bounds_in_generics` explicit, and simply the args it receives a bit.
Remove support for decompressing dylib metadata
We haven't been compressing dylib metadata for a while now. Removing decompression support will regress error messages about an incompatible rustc version being used, but dylibs are pretty rare anyway.
Fixes https://github.com/rust-lang/rust-analyzer/issues/18451
Use protected visibility when building rustc with LLD
https://github.com/rust-lang/compiler-team/issues/782
I wasn't sure about having two commits in a PR, but I figured, at least initially it might make sense to discuss these commits together. Happy to squash, or move the second commit to a separate PR.
I contemplated trying to enable protected visibility for more cases when LLD will be used other than just `-Zlinker-features=+lld`, but that would be more a complex change that probably still wouldn't cover all cases when LLD is used, so went with the simplest option of just checking if the linker-feature is enabled.
r? lqd
Remove region from adjustments
It's not necessary to store this region, because it's only used in THIR and MemCat/ExprUse, both of which already basically only deal with erased regions anyways.
force-recompile library changes on download-rustc="if-unchanged"
This makes the download-rustc="if-unchanged" option more functional and useful for library developers.
Implements the second item from [this tracking issue](https://github.com/rust-lang/rust/issues/131744).
Rename `rustc_abi::Abi` to `BackendRepr`
Remove the confabulation of `rustc_abi::Abi` with what "ABI" actually means by renaming it to `BackendRepr`, and rename `Abi::Aggregate` to `BackendRepr::Memory`. The type never actually represented how things are passed, as that has to have `PassMode` considered, at minimum, but rather it just is how we represented some things to the backend. This conflation arose because LLVM, the primary backend at the time, would lower certain IR forms using certain ABIs. Even that only somewhat was true, as it broke down when one ventured significantly afield of what is described by the System V AMD64 ABI either by using different architectures, ABI-modifying IR annotations, the same architecture **with different ISA extensions enabled**, or other... unexpected delights.
Unfortunately both names are still somewhat of a misnomer right now, as people have written code for years based on this misunderstanding. Still, their original names are even moreso, and for better or worse, this backend code hasn't received as much maintenance as the rest of the compiler, lately. Actually arriving at a correct end-state will simply require us to disentangle a lot of code in order to fix, much of it pointlessly repeated in several places. Thus this is not an "actual fix", just a way to deflect further misunderstandings.
rustdoc: make doctest span tweak a 2024 edition change
Fixes#132203
This is a compatibility hack, because I think the new behavior is better. When an A `include_str!` B, and B `include_str!` C, the path to C should be resolved relative to B, not A. That's how `include!` itself works, so that's how `include_str!` with should work.
Fix directives for lint-non-snake-case-crate
This test fails on targets without unwinding or with `--target-rustcflags=-Cpanic=abort` because the proc macro was compiled as the target, not the host. Some targets were explicitly disabled to pass CI, but these directives are more general.
* `needs-dynamic-linking` is self explanatory
* `force-host` for proc macros
* `no-prefer-dynamic` is apparently also used for proc macros
Note that `needs-unwind` can also be useful for situations other than proc macros where unwinding is necessary.
r? `@jieyouxu`
try-job: test-various